Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90325908
solid_mechanics_model.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Oct 31, 13:12
Size
40 KB
Mime Type
text/x-c
Expires
Sat, Nov 2, 13:12 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
21564831
Attached To
rAKA akantu
solid_mechanics_model.cc
View Options
/**
* @file solid_mechanics_model.cc
*
* @author Ramin Aghababaei <ramin.aghababaei@epfl.ch>
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Clement Roux <clement.roux@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue Jul 27 2010
* @date last modification: Wed Feb 21 2018
*
* @brief Implementation of the SolidMechanicsModel class
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
#include "solid_mechanics_model_tmpl.hh"
#include "communicator.hh"
#include "element_synchronizer.hh"
#include "sparse_matrix.hh"
#include "synchronizer_registry.hh"
#include "dumpable_inline_impl.hh"
#ifdef AKANTU_USE_IOHELPER
#include "dumper_iohelper_paraview.hh"
#endif
#include "material_non_local.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
/**
* A solid mechanics model need a mesh and a dimension to be created. the model
* by it self can not do a lot, the good init functions should be called in
* order to configure the model depending on what we want to do.
*
* @param mesh mesh representing the model we want to simulate
* @param dim spatial dimension of the problem, if dim = 0 (default value) the
* dimension of the problem is assumed to be the on of the mesh
* @param id an id to identify the model
*/
SolidMechanicsModel
::
SolidMechanicsModel
(
Mesh
&
mesh
,
UInt
dim
,
const
ID
&
id
,
const
MemoryID
&
memory_id
,
const
ModelType
model_type
)
:
Model
(
mesh
,
model_type
,
dim
,
id
,
memory_id
),
BoundaryCondition
<
SolidMechanicsModel
>
(),
f_m2a
(
1.0
),
displacement
(
nullptr
),
previous_displacement
(
nullptr
),
displacement_increment
(
nullptr
),
mass
(
nullptr
),
velocity
(
nullptr
),
acceleration
(
nullptr
),
external_force
(
nullptr
),
internal_force
(
nullptr
),
blocked_dofs
(
nullptr
),
current_position
(
nullptr
),
material_index
(
"material index"
,
id
,
memory_id
),
material_local_numbering
(
"material local numbering"
,
id
,
memory_id
),
increment_flag
(
false
),
are_materials_instantiated
(
false
)
{
AKANTU_DEBUG_IN
();
this
->
registerFEEngineObject
<
MyFEEngineType
>
(
"SolidMechanicsFEEngine"
,
mesh
,
Model
::
spatial_dimension
);
#if defined(AKANTU_USE_IOHELPER)
this
->
mesh
.
registerDumper
<
DumperParaview
>
(
"paraview_all"
,
id
,
true
);
this
->
mesh
.
addDumpMesh
(
mesh
,
Model
::
spatial_dimension
,
_not_ghost
,
_ek_regular
);
#endif
material_selector
=
std
::
make_shared
<
DefaultMaterialSelector
>
(
material_index
),
this
->
initDOFManager
();
this
->
registerDataAccessor
(
*
this
);
if
(
this
->
mesh
.
isDistributed
())
{
auto
&
synchronizer
=
this
->
mesh
.
getElementSynchronizer
();
this
->
registerSynchronizer
(
synchronizer
,
_gst_material_id
);
this
->
registerSynchronizer
(
synchronizer
,
_gst_smm_mass
);
this
->
registerSynchronizer
(
synchronizer
,
_gst_smm_stress
);
this
->
registerSynchronizer
(
synchronizer
,
_gst_for_dump
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
SolidMechanicsModel
::~
SolidMechanicsModel
()
{
AKANTU_DEBUG_IN
();
for
(
auto
&
internal
:
this
->
registered_internals
)
{
delete
internal
.
second
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
setTimeStep
(
Real
time_step
,
const
ID
&
solver_id
)
{
Model
::
setTimeStep
(
time_step
,
solver_id
);
#if defined(AKANTU_USE_IOHELPER)
this
->
mesh
.
getDumper
().
setTimeStep
(
time_step
);
#endif
}
/* -------------------------------------------------------------------------- */
/* Initialization */
/* -------------------------------------------------------------------------- */
/**
* This function groups many of the initialization in on function. For most of
* basics case the function should be enough. The functions initialize the
* model, the internal vectors, set them to 0, and depending on the parameters
* it also initialize the explicit or implicit solver.
*
* @param material_file the file containing the materials to use
* @param method the analysis method wanted. See the akantu::AnalysisMethod for
* the different possibilities
*/
void
SolidMechanicsModel
::
initFullImpl
(
const
ModelOptions
&
options
)
{
material_index
.
initialize
(
mesh
,
_element_kind
=
_ek_not_defined
,
_default_value
=
UInt
(
-
1
),
_with_nb_element
=
true
);
material_local_numbering
.
initialize
(
mesh
,
_element_kind
=
_ek_not_defined
,
_with_nb_element
=
true
);
Model
::
initFullImpl
(
options
);
// initialize the materials
if
(
this
->
parser
.
getLastParsedFile
()
!=
""
)
{
this
->
instantiateMaterials
();
}
this
->
initMaterials
();
this
->
initBC
(
*
this
,
*
displacement
,
*
displacement_increment
,
*
external_force
);
}
/* -------------------------------------------------------------------------- */
TimeStepSolverType
SolidMechanicsModel
::
getDefaultSolverType
()
const
{
return
_tsst_dynamic_lumped
;
}
/* -------------------------------------------------------------------------- */
ModelSolverOptions
SolidMechanicsModel
::
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
{
ModelSolverOptions
options
;
switch
(
type
)
{
case
_tsst_dynamic_lumped:
{
options
.
non_linear_solver_type
=
_nls_lumped
;
options
.
integration_scheme_type
[
"displacement"
]
=
_ist_central_difference
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_acceleration
;
break
;
}
case
_tsst_static:
{
options
.
non_linear_solver_type
=
_nls_newton_raphson
;
options
.
integration_scheme_type
[
"displacement"
]
=
_ist_pseudo_time
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_not_defined
;
break
;
}
case
_tsst_dynamic:
{
if
(
this
->
method
==
_explicit_consistent_mass
)
{
options
.
non_linear_solver_type
=
_nls_newton_raphson
;
options
.
integration_scheme_type
[
"displacement"
]
=
_ist_central_difference
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_acceleration
;
}
else
{
options
.
non_linear_solver_type
=
_nls_newton_raphson
;
options
.
integration_scheme_type
[
"displacement"
]
=
_ist_trapezoidal_rule_2
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_displacement
;
}
break
;
}
default
:
AKANTU_EXCEPTION
(
type
<<
" is not a valid time step solver type"
);
}
return
options
;
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
ID
,
TimeStepSolverType
>
SolidMechanicsModel
::
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
{
switch
(
method
)
{
case
_explicit_lumped_mass:
{
return
std
::
make_tuple
(
"explicit_lumped"
,
_tsst_dynamic_lumped
);
}
case
_explicit_consistent_mass:
{
return
std
::
make_tuple
(
"explicit"
,
_tsst_dynamic
);
}
case
_static:
{
return
std
::
make_tuple
(
"static"
,
_tsst_static
);
}
case
_implicit_dynamic:
{
return
std
::
make_tuple
(
"implicit"
,
_tsst_dynamic
);
}
default
:
return
std
::
make_tuple
(
"unknown"
,
_tsst_not_defined
);
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
initSolver
(
TimeStepSolverType
time_step_solver_type
,
NonLinearSolverType
)
{
auto
&
dof_manager
=
this
->
getDOFManager
();
/* ------------------------------------------------------------------------ */
// for alloc type of solvers
this
->
allocNodalField
(
this
->
displacement
,
spatial_dimension
,
"displacement"
);
this
->
allocNodalField
(
this
->
previous_displacement
,
spatial_dimension
,
"previous_displacement"
);
this
->
allocNodalField
(
this
->
displacement_increment
,
spatial_dimension
,
"displacement_increment"
);
this
->
allocNodalField
(
this
->
internal_force
,
spatial_dimension
,
"internal_force"
);
this
->
allocNodalField
(
this
->
external_force
,
spatial_dimension
,
"external_force"
);
this
->
allocNodalField
(
this
->
blocked_dofs
,
spatial_dimension
,
"blocked_dofs"
);
this
->
allocNodalField
(
this
->
current_position
,
spatial_dimension
,
"current_position"
);
// initialize the current positions
this
->
current_position
->
copy
(
this
->
mesh
.
getNodes
());
/* ------------------------------------------------------------------------ */
if
(
!
dof_manager
.
hasDOFs
(
"displacement"
))
{
dof_manager
.
registerDOFs
(
"displacement"
,
*
this
->
displacement
,
_dst_nodal
);
dof_manager
.
registerBlockedDOFs
(
"displacement"
,
*
this
->
blocked_dofs
);
dof_manager
.
registerDOFsIncrement
(
"displacement"
,
*
this
->
displacement_increment
);
dof_manager
.
registerDOFsPrevious
(
"displacement"
,
*
this
->
previous_displacement
);
}
/* ------------------------------------------------------------------------ */
// for dynamic
if
(
time_step_solver_type
==
_tsst_dynamic
||
time_step_solver_type
==
_tsst_dynamic_lumped
)
{
this
->
allocNodalField
(
this
->
velocity
,
spatial_dimension
,
"velocity"
);
this
->
allocNodalField
(
this
->
acceleration
,
spatial_dimension
,
"acceleration"
);
if
(
!
dof_manager
.
hasDOFsDerivatives
(
"displacement"
,
1
))
{
dof_manager
.
registerDOFsDerivative
(
"displacement"
,
1
,
*
this
->
velocity
);
dof_manager
.
registerDOFsDerivative
(
"displacement"
,
2
,
*
this
->
acceleration
);
}
}
}
/* -------------------------------------------------------------------------- */
/**
* Initialize the model,basically it pre-compute the shapes, shapes derivatives
* and jacobian
*/
void
SolidMechanicsModel
::
initModel
()
{
/// \todo add the current position as a parameter to initShapeFunctions for
/// large deformation
getFEEngine
().
initShapeFunctions
(
_not_ghost
);
getFEEngine
().
initShapeFunctions
(
_ghost
);
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
assembleResidual
()
{
AKANTU_DEBUG_IN
();
/* ------------------------------------------------------------------------ */
// computes the internal forces
this
->
assembleInternalForces
();
/* ------------------------------------------------------------------------ */
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
*
this
->
external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
*
this
->
internal_force
,
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
assembleResidual
(
const
ID
&
residual_part
)
{
AKANTU_DEBUG_IN
();
if
(
"external"
==
residual_part
)
{
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
*
this
->
external_force
,
1
);
AKANTU_DEBUG_OUT
();
return
;
}
if
(
"internal"
==
residual_part
)
{
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
*
this
->
internal_force
,
1
);
AKANTU_DEBUG_OUT
();
return
;
}
AKANTU_CUSTOM_EXCEPTION
(
debug
::
SolverCallbackResidualPartUnknown
(
residual_part
));
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
MatrixType
SolidMechanicsModel
::
getMatrixType
(
const
ID
&
matrix_id
)
{
// \TODO check the materials to know what is the correct answer
if
(
matrix_id
==
"C"
)
return
_mt_not_defined
;
return
_symmetric
;
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
assembleMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
{
this
->
assembleStiffnessMatrix
();
}
else
if
(
matrix_id
==
"M"
)
{
this
->
assembleMass
();
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
assembleLumpedMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"M"
)
{
this
->
assembleMassLumped
();
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
beforeSolveStep
()
{
for
(
auto
&
material
:
materials
)
material
->
beforeSolveStep
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
afterSolveStep
()
{
for
(
auto
&
material
:
materials
)
material
->
afterSolveStep
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
predictor
()
{
++
displacement_release
;
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
corrector
()
{
++
displacement_release
;
}
/* -------------------------------------------------------------------------- */
/**
* This function computes the internal forces as F_{int} = \int_{\Omega} N
* \sigma d\Omega@f$
*/
void
SolidMechanicsModel
::
assembleInternalForces
()
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_INFO
(
"Assemble the internal forces"
);
this
->
internal_force
->
clear
();
// compute the stresses of local elements
AKANTU_DEBUG_INFO
(
"Compute local stresses"
);
for
(
auto
&
material
:
materials
)
{
material
->
computeAllStresses
(
_not_ghost
);
}
/* ------------------------------------------------------------------------ */
/* Computation of the non local part */
if
(
this
->
non_local_manager
)
this
->
non_local_manager
->
computeAllNonLocalStresses
();
// communicate the stresses
AKANTU_DEBUG_INFO
(
"Send data for residual assembly"
);
this
->
asynchronousSynchronize
(
_gst_smm_stress
);
// assemble the forces due to local stresses
AKANTU_DEBUG_INFO
(
"Assemble residual for local elements"
);
for
(
auto
&
material
:
materials
)
{
material
->
assembleInternalForces
(
_not_ghost
);
}
// finalize communications
AKANTU_DEBUG_INFO
(
"Wait distant stresses"
);
this
->
waitEndSynchronize
(
_gst_smm_stress
);
// assemble the stresses due to ghost elements
AKANTU_DEBUG_INFO
(
"Assemble residual for ghost elements"
);
for
(
auto
&
material
:
materials
)
{
material
->
assembleInternalForces
(
_ghost
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
assembleStiffnessMatrix
()
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_INFO
(
"Assemble the new stiffness matrix."
);
// Check if materials need to recompute the matrix
bool
need_to_reassemble
=
false
;
for
(
auto
&
material
:
materials
)
{
need_to_reassemble
|=
material
->
hasStiffnessMatrixChanged
();
}
if
(
need_to_reassemble
)
{
this
->
getDOFManager
().
getMatrix
(
"K"
).
clear
();
// call compute stiffness matrix on each local elements
for
(
auto
&
material
:
materials
)
{
material
->
assembleStiffnessMatrix
(
_not_ghost
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
updateCurrentPosition
()
{
if
(
this
->
current_position_release
==
this
->
displacement_release
)
return
;
this
->
current_position
->
copy
(
this
->
mesh
.
getNodes
());
auto
cpos_it
=
this
->
current_position
->
begin
(
Model
::
spatial_dimension
);
auto
cpos_end
=
this
->
current_position
->
end
(
Model
::
spatial_dimension
);
auto
disp_it
=
this
->
displacement
->
begin
(
Model
::
spatial_dimension
);
for
(;
cpos_it
!=
cpos_end
;
++
cpos_it
,
++
disp_it
)
{
*
cpos_it
+=
*
disp_it
;
}
this
->
current_position_release
=
this
->
displacement_release
;
}
/* -------------------------------------------------------------------------- */
const
Array
<
Real
>
&
SolidMechanicsModel
::
getCurrentPosition
()
{
this
->
updateCurrentPosition
();
return
*
this
->
current_position
;
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
updateDataForNonLocalCriterion
(
ElementTypeMapReal
&
criterion
)
{
const
ID
field_name
=
criterion
.
getName
();
for
(
auto
&
material
:
materials
)
{
if
(
!
material
->
isInternal
<
Real
>
(
field_name
,
_ek_regular
))
continue
;
for
(
auto
ghost_type
:
ghost_types
)
{
material
->
flattenInternal
(
field_name
,
criterion
,
ghost_type
,
_ek_regular
);
}
}
}
/* -------------------------------------------------------------------------- */
/* Information */
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getStableTimeStep
()
{
AKANTU_DEBUG_IN
();
Real
min_dt
=
getStableTimeStep
(
_not_ghost
);
/// reduction min over all processors
mesh
.
getCommunicator
().
allReduce
(
min_dt
,
SynchronizerOperation
::
_min
);
AKANTU_DEBUG_OUT
();
return
min_dt
;
}
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getStableTimeStep
(
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
Real
min_dt
=
std
::
numeric_limits
<
Real
>::
max
();
this
->
updateCurrentPosition
();
Element
elem
;
elem
.
ghost_type
=
ghost_type
;
for
(
auto
type
:
mesh
.
elementTypes
(
Model
::
spatial_dimension
,
ghost_type
,
_ek_regular
))
{
elem
.
type
=
type
;
UInt
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
UInt
nb_element
=
mesh
.
getNbElement
(
type
);
auto
mat_indexes
=
material_index
(
type
,
ghost_type
).
begin
();
auto
mat_loc_num
=
material_local_numbering
(
type
,
ghost_type
).
begin
();
Array
<
Real
>
X
(
0
,
nb_nodes_per_element
*
Model
::
spatial_dimension
);
FEEngine
::
extractNodalToElementField
(
mesh
,
*
current_position
,
X
,
type
,
_not_ghost
);
auto
X_el
=
X
.
begin
(
Model
::
spatial_dimension
,
nb_nodes_per_element
);
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
X_el
,
++
mat_indexes
,
++
mat_loc_num
)
{
elem
.
element
=
*
mat_loc_num
;
Real
el_h
=
getFEEngine
().
getElementInradius
(
*
X_el
,
type
);
Real
el_c
=
this
->
materials
[
*
mat_indexes
]
->
getCelerity
(
elem
);
Real
el_dt
=
el_h
/
el_c
;
min_dt
=
std
::
min
(
min_dt
,
el_dt
);
}
}
AKANTU_DEBUG_OUT
();
return
min_dt
;
}
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getKineticEnergy
()
{
AKANTU_DEBUG_IN
();
Real
ekin
=
0.
;
UInt
nb_nodes
=
mesh
.
getNbNodes
();
if
(
this
->
getDOFManager
().
hasLumpedMatrix
(
"M"
))
{
auto
m_it
=
this
->
mass
->
begin
(
Model
::
spatial_dimension
);
auto
m_end
=
this
->
mass
->
end
(
Model
::
spatial_dimension
);
auto
v_it
=
this
->
velocity
->
begin
(
Model
::
spatial_dimension
);
for
(
UInt
n
=
0
;
m_it
!=
m_end
;
++
n
,
++
m_it
,
++
v_it
)
{
const
auto
&
v
=
*
v_it
;
const
auto
&
m
=
*
m_it
;
Real
mv2
=
0.
;
auto
is_local_node
=
mesh
.
isLocalOrMasterNode
(
n
);
// bool is_not_pbc_slave_node = !isPBCSlaveNode(n);
auto
count_node
=
is_local_node
;
// && is_not_pbc_slave_node;
if
(
count_node
)
{
for
(
UInt
i
=
0
;
i
<
Model
::
spatial_dimension
;
++
i
)
{
if
(
m
(
i
)
>
std
::
numeric_limits
<
Real
>::
epsilon
())
mv2
+=
v
(
i
)
*
v
(
i
)
*
m
(
i
);
}
}
ekin
+=
mv2
;
}
}
else
if
(
this
->
getDOFManager
().
hasMatrix
(
"M"
))
{
Array
<
Real
>
Mv
(
nb_nodes
,
Model
::
spatial_dimension
);
this
->
getDOFManager
().
getMatrix
(
"M"
).
matVecMul
(
*
this
->
velocity
,
Mv
);
auto
mv_it
=
Mv
.
begin
(
Model
::
spatial_dimension
);
auto
mv_end
=
Mv
.
end
(
Model
::
spatial_dimension
);
auto
v_it
=
this
->
velocity
->
begin
(
Model
::
spatial_dimension
);
for
(;
mv_it
!=
mv_end
;
++
mv_it
,
++
v_it
)
{
ekin
+=
v_it
->
dot
(
*
mv_it
);
}
}
else
{
AKANTU_ERROR
(
"No function called to assemble the mass matrix."
);
}
mesh
.
getCommunicator
().
allReduce
(
ekin
,
SynchronizerOperation
::
_sum
);
AKANTU_DEBUG_OUT
();
return
ekin
*
.5
;
}
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getKineticEnergy
(
const
ElementType
&
type
,
UInt
index
)
{
AKANTU_DEBUG_IN
();
UInt
nb_quadrature_points
=
getFEEngine
().
getNbIntegrationPoints
(
type
);
Array
<
Real
>
vel_on_quad
(
nb_quadrature_points
,
Model
::
spatial_dimension
);
Array
<
UInt
>
filter_element
(
1
,
1
,
index
);
getFEEngine
().
interpolateOnIntegrationPoints
(
*
velocity
,
vel_on_quad
,
Model
::
spatial_dimension
,
type
,
_not_ghost
,
filter_element
);
auto
vit
=
vel_on_quad
.
begin
(
Model
::
spatial_dimension
);
auto
vend
=
vel_on_quad
.
end
(
Model
::
spatial_dimension
);
Vector
<
Real
>
rho_v2
(
nb_quadrature_points
);
Real
rho
=
materials
[
material_index
(
type
)(
index
)]
->
getRho
();
for
(
UInt
q
=
0
;
vit
!=
vend
;
++
vit
,
++
q
)
{
rho_v2
(
q
)
=
rho
*
vit
->
dot
(
*
vit
);
}
AKANTU_DEBUG_OUT
();
return
.5
*
getFEEngine
().
integrate
(
rho_v2
,
type
,
index
);
}
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getExternalWork
()
{
AKANTU_DEBUG_IN
();
auto
ext_force_it
=
external_force
->
begin
(
Model
::
spatial_dimension
);
auto
int_force_it
=
internal_force
->
begin
(
Model
::
spatial_dimension
);
auto
boun_it
=
blocked_dofs
->
begin
(
Model
::
spatial_dimension
);
decltype
(
ext_force_it
)
incr_or_velo_it
;
if
(
this
->
method
==
_static
)
{
incr_or_velo_it
=
this
->
displacement_increment
->
begin
(
Model
::
spatial_dimension
);
}
else
{
incr_or_velo_it
=
this
->
velocity
->
begin
(
Model
::
spatial_dimension
);
}
Real
work
=
0.
;
UInt
nb_nodes
=
this
->
mesh
.
getNbNodes
();
for
(
UInt
n
=
0
;
n
<
nb_nodes
;
++
n
,
++
ext_force_it
,
++
int_force_it
,
++
boun_it
,
++
incr_or_velo_it
)
{
const
auto
&
int_force
=
*
int_force_it
;
const
auto
&
ext_force
=
*
ext_force_it
;
const
auto
&
boun
=
*
boun_it
;
const
auto
&
incr_or_velo
=
*
incr_or_velo_it
;
bool
is_local_node
=
this
->
mesh
.
isLocalOrMasterNode
(
n
);
// bool is_not_pbc_slave_node = !this->isPBCSlaveNode(n);
bool
count_node
=
is_local_node
;
// && is_not_pbc_slave_node;
if
(
count_node
)
{
for
(
UInt
i
=
0
;
i
<
Model
::
spatial_dimension
;
++
i
)
{
if
(
boun
(
i
))
work
-=
int_force
(
i
)
*
incr_or_velo
(
i
);
else
work
+=
ext_force
(
i
)
*
incr_or_velo
(
i
);
}
}
}
mesh
.
getCommunicator
().
allReduce
(
work
,
SynchronizerOperation
::
_sum
);
if
(
this
->
method
!=
_static
)
work
*=
this
->
getTimeStep
();
AKANTU_DEBUG_OUT
();
return
work
;
}
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getEnergy
(
const
std
::
string
&
energy_id
)
{
AKANTU_DEBUG_IN
();
if
(
energy_id
==
"kinetic"
)
{
return
getKineticEnergy
();
}
else
if
(
energy_id
==
"external work"
)
{
return
getExternalWork
();
}
Real
energy
=
0.
;
for
(
auto
&
material
:
materials
)
energy
+=
material
->
getEnergy
(
energy_id
);
/// reduction sum over all processors
mesh
.
getCommunicator
().
allReduce
(
energy
,
SynchronizerOperation
::
_sum
);
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
Real
SolidMechanicsModel
::
getEnergy
(
const
std
::
string
&
energy_id
,
const
ElementType
&
type
,
UInt
index
)
{
AKANTU_DEBUG_IN
();
if
(
energy_id
==
"kinetic"
)
{
return
getKineticEnergy
(
type
,
index
);
}
UInt
mat_index
=
this
->
material_index
(
type
,
_not_ghost
)(
index
);
UInt
mat_loc_num
=
this
->
material_local_numbering
(
type
,
_not_ghost
)(
index
);
Real
energy
=
this
->
materials
[
mat_index
]
->
getEnergy
(
energy_id
,
type
,
mat_loc_num
);
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
onElementsAdded
(
const
Array
<
Element
>
&
element_list
,
const
NewElementsEvent
&
event
)
{
AKANTU_DEBUG_IN
();
this
->
material_index
.
initialize
(
mesh
,
_element_kind
=
_ek_not_defined
,
_with_nb_element
=
true
,
_default_value
=
UInt
(
-
1
));
this
->
material_local_numbering
.
initialize
(
mesh
,
_element_kind
=
_ek_not_defined
,
_with_nb_element
=
true
,
_default_value
=
UInt
(
-
1
));
ElementTypeMapArray
<
UInt
>
filter
(
"new_element_filter"
,
this
->
getID
(),
this
->
getMemoryID
());
for
(
auto
&
elem
:
element_list
)
{
if
(
!
filter
.
exists
(
elem
.
type
,
elem
.
ghost_type
))
filter
.
alloc
(
0
,
1
,
elem
.
type
,
elem
.
ghost_type
);
filter
(
elem
.
type
,
elem
.
ghost_type
).
push_back
(
elem
.
element
);
}
this
->
assignMaterialToElements
(
&
filter
);
for
(
auto
&
material
:
materials
)
material
->
onElementsAdded
(
element_list
,
event
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
onElementsRemoved
(
const
Array
<
Element
>
&
element_list
,
const
ElementTypeMapArray
<
UInt
>
&
new_numbering
,
const
RemovedElementsEvent
&
event
)
{
for
(
auto
&
material
:
materials
)
{
material
->
onElementsRemoved
(
element_list
,
new_numbering
,
event
);
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
onNodesAdded
(
const
Array
<
UInt
>
&
nodes_list
,
const
NewNodesEvent
&
event
)
{
AKANTU_DEBUG_IN
();
UInt
nb_nodes
=
mesh
.
getNbNodes
();
if
(
displacement
)
{
displacement
->
resize
(
nb_nodes
,
0.
);
++
displacement_release
;
}
if
(
mass
)
mass
->
resize
(
nb_nodes
,
0.
);
if
(
velocity
)
velocity
->
resize
(
nb_nodes
,
0.
);
if
(
acceleration
)
acceleration
->
resize
(
nb_nodes
,
0.
);
if
(
external_force
)
external_force
->
resize
(
nb_nodes
,
0.
);
if
(
internal_force
)
internal_force
->
resize
(
nb_nodes
,
0.
);
if
(
blocked_dofs
)
blocked_dofs
->
resize
(
nb_nodes
,
0.
);
if
(
current_position
)
current_position
->
resize
(
nb_nodes
,
0.
);
if
(
previous_displacement
)
previous_displacement
->
resize
(
nb_nodes
,
0.
);
if
(
displacement_increment
)
displacement_increment
->
resize
(
nb_nodes
,
0.
);
for
(
auto
&
material
:
materials
)
{
material
->
onNodesAdded
(
nodes_list
,
event
);
}
need_to_reassemble_lumped_mass
=
true
;
need_to_reassemble_mass
=
true
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
onNodesRemoved
(
const
Array
<
UInt
>
&
/*element_list*/
,
const
Array
<
UInt
>
&
new_numbering
,
const
RemovedNodesEvent
&
/*event*/
)
{
if
(
displacement
)
{
mesh
.
removeNodesFromArray
(
*
displacement
,
new_numbering
);
++
displacement_release
;
}
if
(
mass
)
mesh
.
removeNodesFromArray
(
*
mass
,
new_numbering
);
if
(
velocity
)
mesh
.
removeNodesFromArray
(
*
velocity
,
new_numbering
);
if
(
acceleration
)
mesh
.
removeNodesFromArray
(
*
acceleration
,
new_numbering
);
if
(
internal_force
)
mesh
.
removeNodesFromArray
(
*
internal_force
,
new_numbering
);
if
(
external_force
)
mesh
.
removeNodesFromArray
(
*
external_force
,
new_numbering
);
if
(
blocked_dofs
)
mesh
.
removeNodesFromArray
(
*
blocked_dofs
,
new_numbering
);
// if (increment_acceleration)
// mesh.removeNodesFromArray(*increment_acceleration, new_numbering);
if
(
displacement_increment
)
mesh
.
removeNodesFromArray
(
*
displacement_increment
,
new_numbering
);
if
(
previous_displacement
)
mesh
.
removeNodesFromArray
(
*
previous_displacement
,
new_numbering
);
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
)
;
stream
<<
space
<<
"Solid Mechanics Model ["
<<
std
::
endl
;
stream
<<
space
<<
" + id : "
<<
id
<<
std
::
endl
;
stream
<<
space
<<
" + spatial dimension : "
<<
Model
::
spatial_dimension
<<
std
::
endl
;
stream
<<
space
<<
" + fem ["
<<
std
::
endl
;
getFEEngine
().
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
" + nodals information ["
<<
std
::
endl
;
displacement
->
printself
(
stream
,
indent
+
2
);
if
(
velocity
)
velocity
->
printself
(
stream
,
indent
+
2
);
if
(
acceleration
)
acceleration
->
printself
(
stream
,
indent
+
2
);
if
(
mass
)
mass
->
printself
(
stream
,
indent
+
2
);
external_force
->
printself
(
stream
,
indent
+
2
);
internal_force
->
printself
(
stream
,
indent
+
2
);
blocked_dofs
->
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
" + material information ["
<<
std
::
endl
;
material_index
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
" + materials ["
<<
std
::
endl
;
for
(
auto
&
material
:
materials
)
{
material
->
printself
(
stream
,
indent
+
1
);
}
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
initializeNonLocal
()
{
this
->
non_local_manager
->
synchronize
(
*
this
,
_gst_material_id
);
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
insertIntegrationPointsInNeighborhoods
(
const
GhostType
&
ghost_type
)
{
for
(
auto
&
mat
:
materials
)
{
MaterialNonLocalInterface
*
mat_non_local
;
if
((
mat_non_local
=
dynamic_cast
<
MaterialNonLocalInterface
*>
(
mat
.
get
()))
==
nullptr
)
continue
;
ElementTypeMapArray
<
Real
>
quadrature_points_coordinates
(
"quadrature_points_coordinates_tmp_nl"
,
this
->
id
,
this
->
memory_id
);
quadrature_points_coordinates
.
initialize
(
this
->
getFEEngine
(),
_nb_component
=
spatial_dimension
,
_ghost_type
=
ghost_type
);
for
(
auto
&
type
:
quadrature_points_coordinates
.
elementTypes
(
Model
::
spatial_dimension
,
ghost_type
))
{
this
->
getFEEngine
().
computeIntegrationPointsCoordinates
(
quadrature_points_coordinates
(
type
,
ghost_type
),
type
,
ghost_type
);
}
mat_non_local
->
initMaterialNonLocal
();
mat_non_local
->
insertIntegrationPointsInNeighborhoods
(
ghost_type
,
quadrature_points_coordinates
);
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
computeNonLocalStresses
(
const
GhostType
&
ghost_type
)
{
for
(
auto
&
mat
:
materials
)
{
if
(
dynamic_cast
<
MaterialNonLocalInterface
*>
(
mat
.
get
())
==
nullptr
)
continue
;
auto
&
mat_non_local
=
dynamic_cast
<
MaterialNonLocalInterface
&>
(
*
mat
);
mat_non_local
.
computeNonLocalStresses
(
ghost_type
);
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
updateLocalInternal
(
ElementTypeMapReal
&
internal_flat
,
const
GhostType
&
ghost_type
,
const
ElementKind
&
kind
)
{
const
ID
field_name
=
internal_flat
.
getName
();
for
(
auto
&
material
:
materials
)
{
if
(
material
->
isInternal
<
Real
>
(
field_name
,
kind
))
material
->
flattenInternal
(
field_name
,
internal_flat
,
ghost_type
,
kind
);
}
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
updateNonLocalInternal
(
ElementTypeMapReal
&
internal_flat
,
const
GhostType
&
ghost_type
,
const
ElementKind
&
kind
)
{
const
ID
field_name
=
internal_flat
.
getName
();
for
(
auto
&
mat
:
materials
)
{
if
(
dynamic_cast
<
MaterialNonLocalInterface
*>
(
mat
.
get
())
==
nullptr
)
continue
;
auto
&
mat_non_local
=
dynamic_cast
<
MaterialNonLocalInterface
&>
(
*
mat
);
mat_non_local
.
updateNonLocalInternals
(
internal_flat
,
field_name
,
ghost_type
,
kind
);
}
}
/* -------------------------------------------------------------------------- */
FEEngine
&
SolidMechanicsModel
::
getFEEngineBoundary
(
const
ID
&
name
)
{
return
dynamic_cast
<
FEEngine
&>
(
getFEEngineClassBoundary
<
MyFEEngineType
>
(
name
));
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
splitElementByMaterial
(
const
Array
<
Element
>
&
elements
,
std
::
vector
<
Array
<
Element
>>
&
elements_per_mat
)
const
{
for
(
const
auto
&
el
:
elements
)
{
Element
mat_el
=
el
;
mat_el
.
element
=
this
->
material_local_numbering
(
el
);
elements_per_mat
[
this
->
material_index
(
el
)].
push_back
(
mat_el
);
}
}
/* -------------------------------------------------------------------------- */
UInt
SolidMechanicsModel
::
getNbData
(
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
{
AKANTU_DEBUG_IN
();
UInt
size
=
0
;
UInt
nb_nodes_per_element
=
0
;
for
(
const
Element
&
el
:
elements
)
{
nb_nodes_per_element
+=
Mesh
::
getNbNodesPerElement
(
el
.
type
);
}
switch
(
tag
)
{
case
_gst_material_id:
{
size
+=
elements
.
size
()
*
sizeof
(
UInt
);
break
;
}
case
_gst_smm_mass:
{
size
+=
nb_nodes_per_element
*
sizeof
(
Real
)
*
Model
::
spatial_dimension
;
// mass vector
break
;
}
case
_gst_smm_for_gradu:
{
size
+=
nb_nodes_per_element
*
Model
::
spatial_dimension
*
sizeof
(
Real
);
// displacement
break
;
}
case
_gst_smm_boundary:
{
// force, displacement, boundary
size
+=
nb_nodes_per_element
*
Model
::
spatial_dimension
*
(
2
*
sizeof
(
Real
)
+
sizeof
(
bool
));
break
;
}
case
_gst_for_dump:
{
// displacement, velocity, acceleration, residual, force
size
+=
nb_nodes_per_element
*
Model
::
spatial_dimension
*
sizeof
(
Real
)
*
5
;
break
;
}
default
:
{}
}
if
(
tag
!=
_gst_material_id
)
{
splitByMaterial
(
elements
,
[
&
](
auto
&&
mat
,
auto
&&
elements
)
{
size
+=
mat
.
getNbData
(
elements
,
tag
);
});
}
AKANTU_DEBUG_OUT
();
return
size
;
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
{
AKANTU_DEBUG_IN
();
switch
(
tag
)
{
case
_gst_material_id:
{
this
->
packElementalDataHelper
(
material_index
,
buffer
,
elements
,
false
,
getFEEngine
());
break
;
}
case
_gst_smm_mass:
{
packNodalDataHelper
(
*
mass
,
buffer
,
elements
,
mesh
);
break
;
}
case
_gst_smm_for_gradu:
{
packNodalDataHelper
(
*
displacement
,
buffer
,
elements
,
mesh
);
break
;
}
case
_gst_for_dump:
{
packNodalDataHelper
(
*
displacement
,
buffer
,
elements
,
mesh
);
packNodalDataHelper
(
*
velocity
,
buffer
,
elements
,
mesh
);
packNodalDataHelper
(
*
acceleration
,
buffer
,
elements
,
mesh
);
packNodalDataHelper
(
*
internal_force
,
buffer
,
elements
,
mesh
);
packNodalDataHelper
(
*
external_force
,
buffer
,
elements
,
mesh
);
break
;
}
case
_gst_smm_boundary:
{
packNodalDataHelper
(
*
external_force
,
buffer
,
elements
,
mesh
);
packNodalDataHelper
(
*
velocity
,
buffer
,
elements
,
mesh
);
packNodalDataHelper
(
*
blocked_dofs
,
buffer
,
elements
,
mesh
);
break
;
}
default
:
{}
}
if
(
tag
!=
_gst_material_id
)
{
splitByMaterial
(
elements
,
[
&
](
auto
&&
mat
,
auto
&&
elements
)
{
mat
.
packData
(
buffer
,
elements
,
tag
);
});
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
{
AKANTU_DEBUG_IN
();
switch
(
tag
)
{
case
_gst_material_id:
{
for
(
auto
&&
element
:
elements
)
{
UInt
recv_mat_index
;
buffer
>>
recv_mat_index
;
UInt
&
mat_index
=
material_index
(
element
);
if
(
mat_index
!=
UInt
(
-
1
))
continue
;
// add ghosts element to the correct material
mat_index
=
recv_mat_index
;
UInt
index
=
materials
[
mat_index
]
->
addElement
(
element
);
material_local_numbering
(
element
)
=
index
;
}
break
;
}
case
_gst_smm_mass:
{
unpackNodalDataHelper
(
*
mass
,
buffer
,
elements
,
mesh
);
break
;
}
case
_gst_smm_for_gradu:
{
unpackNodalDataHelper
(
*
displacement
,
buffer
,
elements
,
mesh
);
break
;
}
case
_gst_for_dump:
{
unpackNodalDataHelper
(
*
displacement
,
buffer
,
elements
,
mesh
);
unpackNodalDataHelper
(
*
velocity
,
buffer
,
elements
,
mesh
);
unpackNodalDataHelper
(
*
acceleration
,
buffer
,
elements
,
mesh
);
unpackNodalDataHelper
(
*
internal_force
,
buffer
,
elements
,
mesh
);
unpackNodalDataHelper
(
*
external_force
,
buffer
,
elements
,
mesh
);
break
;
}
case
_gst_smm_boundary:
{
unpackNodalDataHelper
(
*
external_force
,
buffer
,
elements
,
mesh
);
unpackNodalDataHelper
(
*
velocity
,
buffer
,
elements
,
mesh
);
unpackNodalDataHelper
(
*
blocked_dofs
,
buffer
,
elements
,
mesh
);
break
;
}
default
:
{}
}
if
(
tag
!=
_gst_material_id
)
{
splitByMaterial
(
elements
,
[
&
](
auto
&&
mat
,
auto
&&
elements
)
{
mat
.
unpackData
(
buffer
,
elements
,
tag
);
});
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
UInt
SolidMechanicsModel
::
getNbData
(
const
Array
<
UInt
>
&
dofs
,
const
SynchronizationTag
&
tag
)
const
{
AKANTU_DEBUG_IN
();
UInt
size
=
0
;
// UInt nb_nodes = mesh.getNbNodes();
switch
(
tag
)
{
case
_gst_smm_uv:
{
size
+=
sizeof
(
Real
)
*
Model
::
spatial_dimension
*
2
;
break
;
}
case
_gst_smm_res:
{
size
+=
sizeof
(
Real
)
*
Model
::
spatial_dimension
;
break
;
}
case
_gst_smm_mass:
{
size
+=
sizeof
(
Real
)
*
Model
::
spatial_dimension
;
break
;
}
case
_gst_for_dump:
{
size
+=
sizeof
(
Real
)
*
Model
::
spatial_dimension
*
5
;
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
AKANTU_DEBUG_OUT
();
return
size
*
dofs
.
size
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
UInt
>
&
dofs
,
const
SynchronizationTag
&
tag
)
const
{
AKANTU_DEBUG_IN
();
switch
(
tag
)
{
case
_gst_smm_uv:
{
packDOFDataHelper
(
*
displacement
,
buffer
,
dofs
);
packDOFDataHelper
(
*
velocity
,
buffer
,
dofs
);
break
;
}
case
_gst_smm_res:
{
packDOFDataHelper
(
*
internal_force
,
buffer
,
dofs
);
break
;
}
case
_gst_smm_mass:
{
packDOFDataHelper
(
*
mass
,
buffer
,
dofs
);
break
;
}
case
_gst_for_dump:
{
packDOFDataHelper
(
*
displacement
,
buffer
,
dofs
);
packDOFDataHelper
(
*
velocity
,
buffer
,
dofs
);
packDOFDataHelper
(
*
acceleration
,
buffer
,
dofs
);
packDOFDataHelper
(
*
internal_force
,
buffer
,
dofs
);
packDOFDataHelper
(
*
external_force
,
buffer
,
dofs
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolidMechanicsModel
::
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
UInt
>
&
dofs
,
const
SynchronizationTag
&
tag
)
{
AKANTU_DEBUG_IN
();
switch
(
tag
)
{
case
_gst_smm_uv:
{
unpackDOFDataHelper
(
*
displacement
,
buffer
,
dofs
);
unpackDOFDataHelper
(
*
velocity
,
buffer
,
dofs
);
break
;
}
case
_gst_smm_res:
{
unpackDOFDataHelper
(
*
internal_force
,
buffer
,
dofs
);
break
;
}
case
_gst_smm_mass:
{
unpackDOFDataHelper
(
*
mass
,
buffer
,
dofs
);
break
;
}
case
_gst_for_dump:
{
unpackDOFDataHelper
(
*
displacement
,
buffer
,
dofs
);
unpackDOFDataHelper
(
*
velocity
,
buffer
,
dofs
);
unpackDOFDataHelper
(
*
acceleration
,
buffer
,
dofs
);
unpackDOFDataHelper
(
*
internal_force
,
buffer
,
dofs
);
unpackDOFDataHelper
(
*
external_force
,
buffer
,
dofs
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
Event Timeline
Log In to Comment