Page MenuHomec4science

test_dof_synchronizer.cc
No OneTemporary

File Metadata

Created
Wed, Nov 13, 23:10

test_dof_synchronizer.cc

/**
* @file test_dof_synchronizer.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 17 2011
* @date last modification: Sun Oct 19 2014
*
* @brief Test the functionality of the DOFSynchronizer class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "dof_synchronizer.hh"
#include "mesh_partition_scotch.hh"
#include "mesh_io.hh"
#include "static_communicator.hh"
#include "distributed_synchronizer.hh"
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
# include "io_helper.hh"
#endif //AKANTU_USE_IOHELPER
/* -------------------------------------------------------------------------- */
using namespace akantu;
int main(int argc, char *argv[])
{
const UInt spatial_dimension = 2;
initialize(argc, argv);
StaticCommunicator & comm = akantu::StaticCommunicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
Mesh mesh(spatial_dimension);
/* ------------------------------------------------------------------------ */
/* Parallel initialization */
/* ------------------------------------------------------------------------ */
DistributedSynchronizer * communicator;
MeshPartition * partition;
if(prank == 0) {
MeshIOMSH mesh_io;
mesh_io.read("bar.msh", mesh);
std::cout << "Partitioning mesh..." << std::endl;
partition = new akantu::MeshPartitionScotch(mesh, spatial_dimension);
partition->partitionate(psize);
communicator = DistributedSynchronizer::createDistributedSynchronizerMesh(mesh, partition);
delete partition;
} else {
communicator = DistributedSynchronizer::createDistributedSynchronizerMesh(mesh, NULL);
}
UInt nb_nodes = mesh.getNbNodes();
Array<Real> dof_vector(nb_nodes, spatial_dimension, "Test vector");
std::cout << "Initializing the synchronizer" << std::endl;
DOFSynchronizer dof_synchronizer(mesh, spatial_dimension);
/* ------------------------------------------------------------------------ */
/* test the sznchroniyation */
/* ------------------------------------------------------------------------ */
for (UInt n = 0; n < nb_nodes; ++n) {
UInt gn = mesh.getNodeGlobalId(n);
for (UInt d = 0; d < spatial_dimension; ++d) {
if(mesh.isMasterNode(n)) dof_vector(n,d) = gn*spatial_dimension + d;
else if(mesh.isLocalNode(n)) dof_vector(n,d) = - (double) (gn*spatial_dimension + d);
else if(mesh.isSlaveNode(n)) dof_vector(n,d) = NAN;
else dof_vector(n,d) = -NAN;
}
}
std::cout << "Synchronizing a dof vector" << std::endl;
dof_synchronizer.synchronize(dof_vector);
for (UInt n = 0; n < nb_nodes; ++n) {
UInt gn = mesh.getNodeGlobalId(n);
for (UInt d = 0; d < spatial_dimension; ++d) {
if(!((mesh.isMasterNode(n) && dof_vector(n,d) == (gn*spatial_dimension + d)) ||
(mesh.isLocalNode(n) && dof_vector(n,d) == - (double) (gn*spatial_dimension + d)) ||
(mesh.isSlaveNode(n) && dof_vector(n,d) == (gn*spatial_dimension + d)) ||
(mesh.isPureGhostNode(n))
)
)
{
debug::setDebugLevel(dblTest);
std::cout << "prank : " << prank << " (node " << gn*spatial_dimension + d << "[" << n * spatial_dimension + d << "]) - "
<< (mesh.isMasterNode(n) && dof_vector(n,d) == (gn*spatial_dimension + d)) << " "
<< (mesh.isLocalNode(n) && dof_vector(n,d) == - (double) (gn*spatial_dimension + d)) << " "
<< (mesh.isSlaveNode(n) && dof_vector(n,d) == (gn*spatial_dimension + d)) << " "
<< (mesh.isPureGhostNode(n)) << std::endl;
std::cout << dof_vector << dof_synchronizer.getDOFGlobalIDs() << dof_synchronizer.getDOFTypes() << std::endl;
debug::setDebugLevel(dblDebug);
return EXIT_FAILURE;
}
}
}
/* ------------------------------------------------------------------------ */
/* test the reduce operation */
/* ------------------------------------------------------------------------ */
for (UInt n = 0; n < nb_nodes; ++n) {
for (UInt d = 0; d < spatial_dimension; ++d) {
if(mesh.isMasterNode(n)) dof_vector(n,d) = 1;
else if(mesh.isLocalNode(n)) dof_vector(n,d) = -300;
else if(mesh.isSlaveNode(n)) dof_vector(n,d) = 2;
else dof_vector(n,d) = -500;
}
}
std::cout << "Reducing a dof vector" << std::endl;
dof_synchronizer.reduceSynchronize<AddOperation>(dof_vector);
for (UInt n = 0; n < nb_nodes; ++n) {
for (UInt d = 0; d < spatial_dimension; ++d) {
if(!((mesh.isMasterNode(n) && dof_vector(n,d) >= 3) ||
(mesh.isLocalNode(n) && dof_vector(n,d) == -300) ||
(mesh.isSlaveNode(n) && dof_vector(n,d) >= 3) ||
(mesh.isPureGhostNode(n) && dof_vector(n,d) == -500)
)
)
{
debug::setDebugLevel(dblTest);
std::cout << dof_vector
<< dof_synchronizer.getDOFGlobalIDs()
<< dof_synchronizer.getDOFTypes() << std::endl;
debug::setDebugLevel(dblDebug);
return EXIT_FAILURE;
}
}
}
/* ------------------------------------------------------------------------ */
/* test the gather/scatter */
/* ------------------------------------------------------------------------ */
dof_vector.clear();
for (UInt n = 0; n < nb_nodes; ++n) {
UInt gn = mesh.getNodeGlobalId(n);
for (UInt d = 0; d < spatial_dimension; ++d) {
if(mesh.isMasterNode(n)) dof_vector(n,d) = gn * spatial_dimension + d;
else if(mesh.isLocalNode(n)) dof_vector(n,d) = - (double) (gn * spatial_dimension + d);
else if(mesh.isSlaveNode(n)) dof_vector(n,d) = NAN;
else dof_vector(n,d) = -NAN;
}
}
std::cout << "Initializing the gather/scatter information" << std::endl;
dof_synchronizer.initScatterGatherCommunicationScheme();
std::cout << "Gathering on proc 0" << std::endl;
if(prank == 0) {
UInt nb_global_nodes = mesh.getNbGlobalNodes();
Array<Real> gathered(nb_global_nodes, spatial_dimension, "gathered information");
dof_synchronizer.gather(dof_vector, 0, &gathered);
for (UInt n = 0; n < nb_nodes; ++n) {
for (UInt d = 0; d < spatial_dimension; ++d) {
if(std::abs(gathered(n,d)) != n * spatial_dimension + d) {
debug::setDebugLevel(dblTest);
std::cout << gathered << std::endl;
std::cout << dof_vector
<< dof_synchronizer.getDOFGlobalIDs()
<< dof_synchronizer.getDOFTypes() << std::endl;
debug::setDebugLevel(dblDebug);
return EXIT_FAILURE;
}
}
}
} else {
dof_synchronizer.gather(dof_vector, 0);
}
dof_vector.clear();
std::cout << "Scattering from proc 0" << std::endl;
if(prank == 0) {
UInt nb_global_nodes = mesh.getNbGlobalNodes();
Array<Real> to_scatter(nb_global_nodes, spatial_dimension, "to scatter information");
for (UInt d = 0; d < nb_global_nodes * spatial_dimension; ++d) {
to_scatter.storage()[d] = d;
}
dof_synchronizer.scatter(dof_vector, 0, &to_scatter);
} else {
dof_synchronizer.scatter(dof_vector, 0);
}
for (UInt n = 0; n < nb_nodes; ++n) {
UInt gn = mesh.getNodeGlobalId(n);
for (UInt d = 0; d < spatial_dimension; ++d) {
if(!mesh.isPureGhostNode(n) && !(dof_vector(n,d) == (gn * spatial_dimension + d))) {
debug::setDebugLevel(dblTest);
std::cout << dof_vector
<< dof_synchronizer.getDOFGlobalIDs()
<< dof_synchronizer.getDOFTypes() << std::endl;
debug::setDebugLevel(dblDebug);
return EXIT_FAILURE;
}
}
}
delete communicator;
finalize();
return 0;
}

Event Timeline