Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94966768
bloc_friction.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 11, 19:01
Size
4 KB
Mime Type
text/x-c
Expires
Fri, Dec 13, 19:01 (2 d)
Engine
blob
Format
Raw Data
Handle
22907291
Attached To
rAKA akantu
bloc_friction.cc
View Options
/**
* Copyright (©) 2013-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "coupler_solid_contact.hh"
#include "non_linear_solver.hh"
#include <fstream>
#include <iomanip>
#include <vector>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
/* -------------------------------------------------------------------------- */
int
main
(
int
argc
,
char
*
argv
[])
{
// Initialize the material database
initialize
(
"material.dat"
,
argc
,
argv
);
// Create the mesh>
Mesh
mesh
(
2
);
// Dimension 2
// Read the mesh
mesh
.
read
(
"bloc.msh"
);
// Create the model
CouplerSolidContact
coupler
(
mesh
);
// Initialize each model
auto
&
solid
=
coupler
.
getSolidMechanicsModel
();
auto
&
contact
=
coupler
.
getContactMechanicsModel
();
auto
&&
selector
=
std
::
make_shared
<
MeshDataMaterialSelector
<
std
::
string
>>
(
"physical_names"
,
solid
);
solid
.
setMaterialSelector
(
selector
);
// Initialize the coupler
coupler
.
initFull
(
_analysis_method
=
_explicit_lumped_mass
);
Real
time_step
=
solid
.
getStableTimeStep
()
*
0.1
;
coupler
.
setTimeStep
(
time_step
);
std
::
cout
<<
"Time step: "
<<
time_step
<<
std
::
endl
;
// Setup the contact
auto
&&
surface_selector
=
std
::
make_shared
<
PhysicalSurfaceSelector
>
(
mesh
);
contact
.
getContactDetector
().
setSurfaceSelector
(
surface_selector
);
// Configuration of the dumper
coupler
.
setBaseName
(
"bloc_friction"
);
coupler
.
addDumpFieldVector
(
"displacement"
);
coupler
.
addDumpFieldVector
(
"velocity"
);
coupler
.
addDumpFieldVector
(
"normals"
);
coupler
.
addDumpFieldVector
(
"tangents"
);
coupler
.
addDumpFieldVector
(
"contact_force"
);
coupler
.
addDumpFieldVector
(
"external_force"
);
coupler
.
addDumpFieldVector
(
"internal_force"
);
coupler
.
addDumpField
(
"areas"
);
coupler
.
addDumpField
(
"stress"
);
coupler
.
addDumpField
(
"blocked_dofs"
);
// Add the boundary conditions
solid
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_x
),
"XFixed"
);
solid
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_y
),
"YFixed"
);
solid
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_x
),
"loading"
);
solid
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_y
),
"loading"
);
// Register velocity and gaps for future damping
auto
&
velocity
=
solid
.
getVelocity
();
auto
&
gaps
=
contact
.
getGaps
();
// Dump the initial state
coupler
.
dump
();
// First loop : compression of the bloc against the wall
for
(
int
s
=
0
;
s
<
10000
;
s
++
)
{
solid
.
applyBC
(
BC
::
Dirichlet
::
IncrementValue
(
-
1.0
/
10000
,
_y
),
"loading"
);
coupler
.
solveStep
();
// damping velocities only along the contacting zone
for
(
auto
&&
tuple
:
zip
(
gaps
,
make_view
(
velocity
,
2
)))
{
auto
&
gap
=
std
::
get
<
0
>
(
tuple
);
auto
&
vel
=
std
::
get
<
1
>
(
tuple
);
if
(
gap
>
0
)
{
vel
*=
0.99
;
}
}
if
(
s
%
100
==
0
)
{
std
::
cout
<<
"Step "
<<
s
<<
"
\t\r
"
<<
std
::
flush
;
coupler
.
dump
();
}
}
std
::
cout
<<
"Compression done !"
<<
std
::
endl
;
// Second loop : sliding of the bloc against the wall
for
(
int
s
=
0
;
s
<
10000
;
s
++
)
{
solid
.
applyBC
(
BC
::
Dirichlet
::
IncrementValue
(
2.0
/
10000
,
_x
),
"loading"
);
coupler
.
solveStep
();
// damping velocities only along the contacting zone
for
(
auto
&&
tuple
:
zip
(
gaps
,
make_view
(
velocity
,
2
)))
{
auto
&
gap
=
std
::
get
<
0
>
(
tuple
);
auto
&
vel
=
std
::
get
<
1
>
(
tuple
);
if
(
gap
>
0
)
{
vel
*=
0.99
;
}
}
if
(
s
%
100
==
0
)
{
std
::
cout
<<
"Step "
<<
s
<<
"
\t\r
"
<<
std
::
flush
;
coupler
.
dump
();
}
}
std
::
cout
<<
"Sliding done !"
<<
std
::
endl
;
// Third loop : stabilization of the system (no external force)
for
(
int
s
=
0
;
s
<
10000
;
s
++
)
{
coupler
.
solveStep
();
// damping velocities only along the contacting zone
for
(
auto
&&
tuple
:
zip
(
gaps
,
make_view
(
velocity
,
2
)))
{
auto
&
gap
=
std
::
get
<
0
>
(
tuple
);
auto
&
vel
=
std
::
get
<
1
>
(
tuple
);
if
(
gap
>
0
)
{
vel
*=
0.99
;
}
}
if
(
s
%
100
==
0
)
{
std
::
cout
<<
"Step "
<<
s
<<
"
\t\r
"
<<
std
::
flush
;
coupler
.
dump
();
}
}
return
0
;
}
Event Timeline
Log In to Comment