Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91181034
heat_diffusion_dynamics_2d.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 17:31
Size
2 KB
Mime Type
text/x-c
Expires
Sun, Nov 10, 17:31 (2 d)
Engine
blob
Format
Raw Data
Handle
22199147
Attached To
rAKA akantu
heat_diffusion_dynamics_2d.cc
View Options
/**
* Copyright (©) 2011-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "heat_transfer_model.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
/* -------------------------------------------------------------------------- */
const
Int
spatial_dimension
=
2
;
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
"material.dat"
,
argc
,
argv
);
// create mesh
Mesh
mesh
(
spatial_dimension
);
mesh
.
read
(
"square.msh"
);
HeatTransferModel
model
(
mesh
);
// initialize everything
model
.
initFull
(
_analysis_method
=
_explicit_lumped_mass
);
// get stable time step
Real
time_step
=
model
.
getStableTimeStep
()
*
0.8
;
std
::
cout
<<
"time step is:"
<<
time_step
<<
"
\n
"
;
model
.
setTimeStep
(
time_step
);
// boundary conditions
const
Array
<
Real
>
&
nodes
=
model
.
getFEEngine
().
getMesh
().
getNodes
();
Array
<
bool
>
&
boundary
=
model
.
getBlockedDOFs
();
Array
<
Real
>
&
temperature
=
model
.
getTemperature
();
double
length
=
1.
;
auto
nb_nodes
=
model
.
getFEEngine
().
getMesh
().
getNbNodes
();
for
(
Int
i
=
0
;
i
<
nb_nodes
;
++
i
)
{
temperature
(
i
)
=
100.
;
Real
dx
=
nodes
(
i
,
0
)
-
length
/
4.
;
Real
dy
=
0.0
;
Real
dz
=
0.0
;
if
(
spatial_dimension
>
1
)
{
dy
=
nodes
(
i
,
1
)
-
length
/
4.
;
}
if
(
spatial_dimension
==
3
)
{
dz
=
nodes
(
i
,
2
)
-
length
/
4.
;
}
Real
d
=
sqrt
(
dx
*
dx
+
dy
*
dy
+
dz
*
dz
);
if
(
d
<
0.1
)
{
boundary
(
i
)
=
true
;
temperature
(
i
)
=
300.
;
}
}
model
.
setBaseName
(
"heat_diffusion_square2d"
);
model
.
addDumpField
(
"temperature"
);
model
.
addDumpField
(
"temperature_rate"
);
model
.
addDumpField
(
"internal_heat_rate"
);
// main loop
int
max_steps
=
15000
;
for
(
int
i
=
0
;
i
<
max_steps
;
i
++
)
{
model
.
solveStep
();
if
(
i
%
100
==
0
)
{
model
.
dump
();
}
if
(
i
%
10
==
0
)
{
std
::
cout
<<
"Step "
<<
i
<<
"/"
<<
max_steps
<<
"
\n
"
;
}
}
std
::
cout
<<
"
\n\n
Stable Time Step is : "
<<
time_step
<<
"
\n
\n
"
<<
"
\n
"
;
return
0
;
}
Event Timeline
Log In to Comment