Page MenuHomec4science

cohesive_extrinsic_ig_tg.cc
No OneTemporary

File Metadata

Created
Thu, May 2, 13:59

cohesive_extrinsic_ig_tg.cc

/**
* @file cohesive_extrinsic_ig_tg.cc
*
* @author Seyedeh Mohadeseh Taheri Mousavi <mohadeseh.taherimousavi@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Mon Jan 18 2016
*
* @brief Test for considering different cohesive properties for intergranular
* (IG) and
* transgranular (TG) fractures in extrinsic cohesive elements
*
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
/* -------------------------------------------------------------------------- */
class Velocity : public BC::Dirichlet::DirichletFunctor {
public:
explicit Velocity(SolidMechanicsModel & model, Real vel, BC::Axis ax = _x)
: DirichletFunctor(ax), model(model), vel(vel) {
disp = vel * model.getTimeStep();
}
public:
inline void operator()(UInt node, Vector<bool> & /*flags*/,
Vector<Real> & disp,
const Vector<Real> & coord) const {
Real sign = std::signbit(coord(axis)) ? -1. : 1.;
disp(axis) += sign * this->disp;
model.getVelocity()(node, axis) = sign * vel;
}
private:
SolidMechanicsModel & model;
Real vel, disp;
};
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
initialize("material.dat", argc, argv);
const UInt spatial_dimension = 2;
const UInt max_steps = 1000;
Mesh mesh(spatial_dimension);
mesh.read("square.msh");
SolidMechanicsModelCohesive model(mesh);
MaterialCohesiveRules rules{{{"btop", "bbottom"}, "tg_cohesive"},
{{"btop", "btop"}, "ig_cohesive"},
{{"bbottom", "bbottom"}, "ig_cohesive"}};
/// model initialization
auto cohesive_material_selector =
std::make_shared<MaterialCohesiveRulesSelector>(model, rules);
auto bulk_material_selector =
std::make_shared<MeshDataMaterialSelector<std::string>>("physical_names",
model);
auto && current_selector = model.getMaterialSelector();
cohesive_material_selector->setFallback(bulk_material_selector);
bulk_material_selector->setFallback(current_selector);
model.setMaterialSelector(cohesive_material_selector);
model.initFull(_analysis_method = _explicit_lumped_mass,
_is_extrinsic = true);
Real time_step = model.getStableTimeStep() * 0.05;
model.setTimeStep(time_step);
std::cout << "Time step: " << time_step << std::endl;
model.assembleMassLumped();
auto & position = mesh.getNodes();
auto & velocity = model.getVelocity();
model.applyBC(BC::Dirichlet::FlagOnly(_y), "top");
model.applyBC(BC::Dirichlet::FlagOnly(_y), "bottom");
model.applyBC(BC::Dirichlet::FlagOnly(_x), "left");
model.applyBC(BC::Dirichlet::FlagOnly(_x), "right");
model.setBaseName("extrinsic");
model.addDumpFieldVector("displacement");
model.addDumpField("velocity");
model.addDumpField("acceleration");
model.addDumpField("internal_force");
model.addDumpField("stress");
model.addDumpField("grad_u");
model.addDumpField("material_index");
model.dump();
/// initial conditions
Real loading_rate = 0.1;
// bar_height = 2
Real VI = loading_rate * 2 * 0.5;
for (auto && data : zip(make_view(position, spatial_dimension),
make_view(velocity, spatial_dimension))) {
std::get<1>(data) = loading_rate * std::get<0>(data);
}
model.dump();
Velocity vely(model, VI, _y);
Velocity velx(model, VI, _x);
/// Main loop
for (UInt s = 1; s <= max_steps; ++s) {
model.applyBC(vely, "top");
model.applyBC(vely, "bottom");
model.applyBC(velx, "left");
model.applyBC(velx, "right");
model.checkCohesiveStress();
model.solveStep();
if (s % 10 == 0) {
model.dump();
std::cout << "passing step " << s << "/" << max_steps << std::endl;
}
}
return 0;
}

Event Timeline