Page MenuHomec4science

test_material_damage_iterative_non_local_serial.cc
No OneTemporary

File Metadata

Created
Sun, Apr 28, 07:32

test_material_damage_iterative_non_local_serial.cc

/**
* @file test_material_damage_iterative_non_local_serial.cc
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @date Thu Nov 26 12:20:15 2015
*
* @brief test the material damage iterative non local in serial
*
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material_damage_iterative_non_local.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
/* -------------------------------------------------------------------------- */
/* Main */
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
Math::setTolerance(1e-13);
debug::setDebugLevel(dblWarning);
initialize("material_non_local.dat", argc, argv);
const UInt spatial_dimension = 2;
ElementType element_type = _triangle_3;
/// read the mesh and partion it
Mesh mesh(spatial_dimension);
mesh.read("plate.msh");
/// model creation
SolidMechanicsModel model(mesh);
/// initialization of the model
model.initFull(SolidMechanicsModelOptions(_static));
/// boundary conditions
/// Dirichlet BC
mesh.createGroupsFromMeshData<std::string>(
"physical_names"); // creates groups from mesh names
model.applyBC(BC::Dirichlet::FixedValue(0, _x), "left");
model.applyBC(BC::Dirichlet::FixedValue(0, _y), "bottom");
model.applyBC(BC::Dirichlet::FixedValue(2., _y), "top");
/// add fields that should be dumped
model.setBaseName("material_damage_iterative_test");
model.addDumpFieldVector("displacement");
;
model.addDumpField("stress");
model.addDumpField("blocked_dofs");
model.addDumpField("residual");
model.addDumpField("grad_u");
model.addDumpField("grad_u non local");
model.addDumpField("damage");
model.addDumpField("partitions");
model.addDumpField("material_index");
model.addDumpField("Sc");
model.addDumpField("force");
model.addDumpField("equivalent_stress");
model.dump();
MaterialDamageIterativeNonLocal<spatial_dimension> & material =
dynamic_cast<MaterialDamageIterativeNonLocal<spatial_dimension> &>(
model.getMaterial(0));
Real error;
bool converged = false;
Real max_eq_stress = 0;
/// solve the system
converged =
model.solveStep<_scm_newton_raphson_tangent_modified,
SolveConvergenceCriteria::_increment>(1e-4, error, 2);
if (converged == false) {
std::cout << "The error is: " << error << std::endl;
AKANTU_DEBUG_ASSERT(converged, "Did not converge");
}
model.dump();
/// check the non-local grad_u: since grad_u is constant everywhere
/// also the grad_u non-local has to be constant
Array<Real> & grad_u_nl =
material.getInternal<Real>("grad_u non local")(element_type, _not_ghost);
Array<Real>::const_matrix_iterator grad_u_nl_it =
grad_u_nl.begin(spatial_dimension, spatial_dimension);
Array<Real>::const_matrix_iterator grad_u_nl_end =
grad_u_nl.end(spatial_dimension, spatial_dimension);
Real diff = 0.;
Matrix<Real> diff_matrix(spatial_dimension, spatial_dimension);
Matrix<Real> const_grad_u(spatial_dimension, spatial_dimension, 0.);
const_grad_u(1, 1) = 1.;
for (; grad_u_nl_it != grad_u_nl_end; ++grad_u_nl_it) {
diff_matrix = (*grad_u_nl_it) - const_grad_u;
diff += diff_matrix.norm<L_2>();
}
if (diff > 10.e-13) {
std::cout << "Error in the non-local grad_u computation" << std::endl;
return EXIT_FAILURE;
}
/// change the displacement in one node to modify grad_u
Array<Real> & displ = model.getDisplacement();
displ(0, 1) = 2.6;
/// compute stresses: this will average grad_u and compute the max. eq. stress
model.updateResidual();
model.dump();
/// due to the change in the displacement element 33 and 37 will
/// have a grad_u different then one
const Array<Real> & grad_u =
material.getInternal<Real>("grad_u")(element_type, _not_ghost);
Array<Real>::const_matrix_iterator grad_u_it =
grad_u.begin(spatial_dimension, spatial_dimension);
Array<Real>::const_matrix_iterator grad_u_end =
grad_u.end(spatial_dimension, spatial_dimension);
diff = 0.;
diff_matrix.zero();
UInt counter = 0;
for (; grad_u_it != grad_u_end; ++grad_u_it) {
diff_matrix = (*grad_u_it) - const_grad_u;
if (counter == 34 || counter == 38) {
if ((diff_matrix.norm<L_2>()) < 0.1) {
std::cout << "Error in the grad_u computation" << std::endl;
return EXIT_FAILURE;
}
} else
diff += diff_matrix.norm<L_2>();
++counter;
}
if (diff > 10.e-13) {
std::cout << "Error in the grad_u computation" << std::endl;
return EXIT_FAILURE;
}
/// check that the non-local grad_u
diff = 0.;
diff_matrix.zero();
Real nl_radius = 1.0; /// same values as in material file
grad_u_nl_it = grad_u_nl.begin(spatial_dimension, spatial_dimension);
ElementTypeMapReal quad_coords("quad_coords");
mesh.initElementTypeMapArray(quad_coords, spatial_dimension,
spatial_dimension, false, _ek_regular, true);
model.getFEEngine().computeIntegrationPointsCoordinates(quad_coords);
UInt nb_elements = mesh.getNbElement(element_type, _not_ghost);
UInt nb_quads = model.getFEEngine().getNbIntegrationPoints(element_type);
Array<Real> & coords = quad_coords(element_type, _not_ghost);
auto coord_it = coords.begin(spatial_dimension);
Vector<Real> q1(spatial_dimension);
Vector<Real> q2(spatial_dimension);
q1 = coord_it[34];
q2 = coord_it[38];
for (UInt e = 0; e < nb_elements; ++e) {
for (UInt q = 0; q < nb_quads; ++q, ++coord_it, ++grad_u_nl_it) {
diff_matrix = (*grad_u_nl_it) - const_grad_u;
if ((q1.distance(*coord_it) <= (nl_radius + Math::getTolerance())) ||
(q2.distance(*coord_it) <= (nl_radius + Math::getTolerance()))) {
if ((diff_matrix.norm<L_2>()) < 1.e-6) {
std::cout << (diff_matrix.norm<L_2>()) << std::endl;
std::cout << "Error in the non-local grad_u computation" << std::endl;
return EXIT_FAILURE;
}
} else
diff += diff_matrix.norm<L_2>();
}
}
if (diff > 10.e-13) {
std::cout << "Error in the non-local grad_u computation" << std::endl;
return EXIT_FAILURE;
}
/// make sure that the normalized equivalent stress is based on the
/// non-local grad_u for this test check the elements that have the
/// constant stress of 1 but different non-local gradu because they
/// are in the neighborhood of the modified elements
coord_it = coords.begin(spatial_dimension);
const Array<Real> & eq_stress =
material.getInternal<Real>("equivalent_stress")(element_type, _not_ghost);
Array<Real>::const_scalar_iterator eq_stress_it = eq_stress.begin();
counter = 0;
for (UInt e = 0; e < nb_elements; ++e) {
for (UInt q = 0; q < nb_quads;
++q, ++coord_it, ++grad_u_nl_it, ++eq_stress_it) {
if (counter == 34 || counter == 38)
continue;
if (((q1.distance(*coord_it) <= (nl_radius + Math::getTolerance())) ||
(q2.distance(*coord_it) <= (nl_radius + Math::getTolerance()))) &&
Math::are_float_equal(*eq_stress_it, 0.1)) {
std::cout << "the normalized equivalent stress is most likely based on "
"the local, not the non-local grad_u!!!!"
<< std::endl;
finalize();
return EXIT_FAILURE;
}
++counter;
}
}
max_eq_stress = material.getNormMaxEquivalentStress();
if (!Math::are_float_equal(max_eq_stress, 0.1311267235941873)) {
std::cout << "the maximum equivalent stress is wrong" << std::endl;
finalize();
return EXIT_FAILURE;
}
model.dump();
finalize();
return EXIT_SUCCESS;
}

Event Timeline