Page MenuHomec4science

integrator_gauss_igfem_inline_impl.hh
No OneTemporary

File Metadata

Created
Tue, May 7, 03:32

integrator_gauss_igfem_inline_impl.hh

/**
* @file integrator_gauss_igfem.hh
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
*
*
* @brief Inline functions of gauss integrator for the case of IGFEM
*
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
*/
/* -------------------------------------------------------------------------- */
} // namespace akantu
#include "fe_engine.hh"
#if defined(AKANTU_DEBUG_TOOLS)
#include "aka_debug_tools.hh"
#endif
namespace akantu {
/* -------------------------------------------------------------------------- */
#define INIT_INTEGRATOR(type) \
computeQuadraturePoints<type>(ghost_type); \
precomputeJacobiansOnQuadraturePoints<type>(nodes, ghost_type); \
checkJacobians<type>(ghost_type);
template <class IOF>
inline void
IntegratorGauss<_ek_igfem, IOF>::initIntegrator(const Array<Real> & nodes,
ElementType type,
GhostType ghost_type) {
AKANTU_BOOST_IGFEM_ELEMENT_SWITCH(INIT_INTEGRATOR);
}
#undef INIT_INTEGRATOR
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline UInt IntegratorGauss<_ek_igfem, IOF>::getNbIntegrationPoints(
GhostType) const {
const ElementType sub_type_1 = ElementClassProperty<type>::sub_element_type_1;
const ElementType sub_type_2 = ElementClassProperty<type>::sub_element_type_2;
UInt nb_quad_points_sub_1 =
GaussIntegrationElement<sub_type_1>::getNbQuadraturePoints();
UInt nb_quad_points_sub_2 =
GaussIntegrationElement<sub_type_2>::getNbQuadraturePoints();
return (nb_quad_points_sub_1 + nb_quad_points_sub_2);
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void IntegratorGauss<_ek_igfem, IOF>::integrateOnElement(
const Array<Real> & f, Real * intf, UInt nb_degree_of_freedom,
const UInt elem, GhostType ghost_type) const {
Array<Real> & jac_loc = jacobians(type, ghost_type);
UInt nb_quadrature_points = getNbIntegrationPoints<type>();
AKANTU_DEBUG_ASSERT(f.getNbComponent() == nb_degree_of_freedom,
"The vector f do not have the good number of component.");
Real * f_val = f.storage() + elem * f.getNbComponent();
Real * jac_val = jac_loc.storage() + elem * nb_quadrature_points;
integrate(f_val, jac_val, intf, nb_degree_of_freedom, nb_quadrature_points);
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline Real IntegratorGauss<_ek_igfem, IOF>::integrate(
const Vector<Real> & in_f, UInt index, GhostType ghost_type) const {
const Array<Real> & jac_loc = jacobians(type, ghost_type);
UInt nb_quadrature_points = getNbIntegrationPoints<type>();
AKANTU_DEBUG_ASSERT(in_f.size() == nb_quadrature_points,
"The vector f do not have nb_quadrature_points entries.");
Real * jac_val = jac_loc.storage() + index * nb_quadrature_points;
Real intf;
integrate(in_f.storage(), jac_val, &intf, 1, nb_quadrature_points);
return intf;
return 0.;
}
/* -------------------------------------------------------------------------- */
template <class IOF>
inline void
IntegratorGauss<_ek_igfem, IOF>::integrate(Real * f, Real * jac, Real * inte,
UInt nb_degree_of_freedom,
UInt nb_quadrature_points) const {
memset(inte, 0, nb_degree_of_freedom * sizeof(Real));
Real * cjac = jac;
for (UInt q = 0; q < nb_quadrature_points; ++q) {
for (UInt dof = 0; dof < nb_degree_of_freedom; ++dof) {
inte[dof] += *f * *cjac;
++f;
}
++cjac;
}
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline const Matrix<Real> &
IntegratorGauss<_ek_igfem, IOF>::getIntegrationPoints(
GhostType ghost_type) const {
AKANTU_DEBUG_ASSERT(
quadrature_points.exists(type, ghost_type),
"Quadrature points for type "
<< quadrature_points.printType(type, ghost_type)
<< " have not been initialized."
<< " Did you use 'computeQuadraturePoints' function ?");
return quadrature_points(type, ghost_type);
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void IntegratorGauss<_ek_igfem, IOF>::computeQuadraturePoints(
GhostType ghost_type) {
/// typedef for the two subelement_types and the parent element type
const ElementType sub_type_1 = ElementClassProperty<type>::sub_element_type_1;
const ElementType sub_type_2 = ElementClassProperty<type>::sub_element_type_2;
/// store the quadrature points on the two subelements
Matrix<Real> & quads_sub_1 = quadrature_points(sub_type_1, ghost_type);
Matrix<Real> & quads_sub_2 = quadrature_points(sub_type_2, ghost_type);
quads_sub_1 = GaussIntegrationElement<sub_type_1>::getQuadraturePoints();
quads_sub_2 = GaussIntegrationElement<sub_type_2>::getQuadraturePoints();
/// store all quad points for the current type
UInt nb_quad_points_sub_1 =
GaussIntegrationElement<sub_type_1>::getNbQuadraturePoints();
UInt nb_quad_points_sub_2 =
GaussIntegrationElement<sub_type_2>::getNbQuadraturePoints();
UInt spatial_dimension = mesh.getSpatialDimension();
Matrix<Real> & quads = quadrature_points(type, ghost_type);
quads = Matrix<Real>(spatial_dimension,
nb_quad_points_sub_1 + nb_quad_points_sub_2);
Matrix<Real> quads_1(quads.storage(), quads.rows(), nb_quad_points_sub_1);
quads_1 = quads_sub_1;
Matrix<Real> quads_2(quads.storage() + quads.rows() * nb_quad_points_sub_1,
quads.rows(), nb_quad_points_sub_2);
quads_2 = quads_sub_2;
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void
IntegratorGauss<_ek_igfem, IOF>::computeJacobianOnQuadPointsByElement(
const Matrix<Real> & node_coords, Vector<Real> & jacobians) {
/// optimize: get the matrix from the ElementTypeMap
Matrix<Real> quad = GaussIntegrationElement<type>::getQuadraturePoints();
// jacobian
ElementClass<type>::computeJacobian(quad, node_coords, jacobians);
}
/* -------------------------------------------------------------------------- */
template <class IOF>
inline IntegratorGauss<_ek_igfem, IOF>::IntegratorGauss(
const Mesh & mesh, const ID & id, const MemoryID & memory_id)
: Integrator(mesh, id, memory_id) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void IntegratorGauss<_ek_igfem, IOF>::checkJacobians(
GhostType ghost_type) const {
AKANTU_DEBUG_IN();
/// typedef for the two subelement_types and the parent element type
const ElementType sub_type_1 = ElementClassProperty<type>::sub_element_type_1;
const ElementType sub_type_2 = ElementClassProperty<type>::sub_element_type_2;
UInt nb_quad_points_sub_1 =
GaussIntegrationElement<sub_type_1>::getNbQuadraturePoints();
UInt nb_quad_points_sub_2 =
GaussIntegrationElement<sub_type_2>::getNbQuadraturePoints();
UInt nb_quadrature_points = nb_quad_points_sub_1 + nb_quad_points_sub_2;
UInt nb_element;
nb_element = mesh.getConnectivity(type, ghost_type).getSize();
Real * jacobians_val = jacobians(type, ghost_type).storage();
for (UInt i = 0; i < nb_element * nb_quadrature_points;
++i, ++jacobians_val) {
if (*jacobians_val < 0)
AKANTU_ERROR(
"Negative jacobian computed,"
<< " possible problem in the element node ordering (Quadrature Point "
<< i % nb_quadrature_points << ":" << i / nb_quadrature_points << ":"
<< type << ":" << ghost_type << ")");
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void
IntegratorGauss<_ek_igfem, IOF>::precomputeJacobiansOnQuadraturePoints(
const Array<Real> & nodes, GhostType ghost_type) {
AKANTU_DEBUG_IN();
/// typedef for the two subelement_types and the parent element type
const ElementType sub_type_1 = ElementClassProperty<type>::sub_element_type_1;
const ElementType sub_type_2 = ElementClassProperty<type>::sub_element_type_2;
UInt spatial_dimension = mesh.getSpatialDimension();
UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
/// get the number of nodes for the subelements and the parent element
UInt nb_nodes_sub_1 =
ElementClass<sub_type_1>::getNbNodesPerInterpolationElement();
UInt nb_nodes_sub_2 =
ElementClass<sub_type_2>::getNbNodesPerInterpolationElement();
UInt nb_quadrature_points_sub_1 =
GaussIntegrationElement<sub_type_1>::getNbQuadraturePoints();
UInt nb_quadrature_points_sub_2 =
GaussIntegrationElement<sub_type_2>::getNbQuadraturePoints();
UInt nb_quadrature_points =
nb_quadrature_points_sub_1 + nb_quadrature_points_sub_2;
UInt nb_element = mesh.getNbElement(type, ghost_type);
Array<Real> * jacobians_tmp;
if (!jacobians.exists(type, ghost_type))
jacobians_tmp = &jacobians.alloc(nb_element * nb_quadrature_points, 1, type,
ghost_type);
else {
jacobians_tmp = &jacobians(type, ghost_type);
jacobians_tmp->resize(nb_element * nb_quadrature_points);
}
Array<Real>::vector_iterator jacobians_it =
jacobians_tmp->begin_reinterpret(nb_quadrature_points, nb_element);
Vector<Real> weights_sub_1 =
GaussIntegrationElement<sub_type_1>::getWeights();
Vector<Real> weights_sub_2 =
GaussIntegrationElement<sub_type_2>::getWeights();
Array<Real> x_el(0, spatial_dimension * nb_nodes_per_element);
FEEngine::extractNodalToElementField(mesh, nodes, x_el, type, ghost_type);
Array<Real>::const_matrix_iterator x_it =
x_el.begin(spatial_dimension, nb_nodes_per_element);
// Matrix<Real> local_coord(spatial_dimension, nb_nodes_per_element);
for (UInt elem = 0; elem < nb_element; ++elem, ++jacobians_it, ++x_it) {
const Matrix<Real> & X = *x_it;
Matrix<Real> sub_1_coords(spatial_dimension, nb_nodes_sub_1);
Matrix<Real> sub_2_coords(spatial_dimension, nb_nodes_sub_2);
ElementClass<type>::getSubElementCoords(X, sub_1_coords, 0);
ElementClass<type>::getSubElementCoords(X, sub_2_coords, 1);
Vector<Real> & J = *jacobians_it;
/// initialize vectors to store the jacobians for each subelement
Vector<Real> J_sub_1(nb_quadrature_points_sub_1);
Vector<Real> J_sub_2(nb_quadrature_points_sub_2);
computeJacobianOnQuadPointsByElement<sub_type_1>(sub_1_coords, J_sub_1);
computeJacobianOnQuadPointsByElement<sub_type_2>(sub_2_coords, J_sub_2);
J_sub_1 *= weights_sub_1;
J_sub_2 *= weights_sub_2;
/// copy results into the jacobian vector for this element
for (UInt i = 0; i < nb_quadrature_points_sub_1; ++i) {
J(i) = J_sub_1(i);
}
for (UInt i = 0; i < nb_quadrature_points_sub_2; ++i) {
J(i + nb_quadrature_points_sub_1) = J_sub_2(i);
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void IntegratorGauss<_ek_igfem, IOF>::integrate(
const Array<Real> & in_f, Array<Real> & intf, UInt nb_degree_of_freedom,
GhostType ghost_type, const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
const Matrix<Real> & quads = quadrature_points(type, ghost_type);
UInt nb_points = quads.cols();
const Array<Real> & jac_loc = jacobians(type, ghost_type);
Array<Real>::const_matrix_iterator J_it;
Array<Real>::matrix_iterator inte_it;
Array<Real>::const_matrix_iterator f_it;
UInt nb_element;
Array<Real> * filtered_J = NULL;
if (filter_elements != empty_filter) {
nb_element = filter_elements.getSize();
filtered_J = new Array<Real>(0, jac_loc.getNbComponent());
FEEngine::filterElementalData(mesh, jac_loc, *filtered_J, type, ghost_type,
filter_elements);
const Array<Real> & cfiltered_J = *filtered_J; // \todo temporary patch
J_it = cfiltered_J.begin_reinterpret(nb_points, 1, nb_element);
} else {
nb_element = mesh.getNbElement(type, ghost_type);
J_it = jac_loc.begin_reinterpret(nb_points, 1, nb_element);
}
intf.resize(nb_element);
f_it = in_f.begin_reinterpret(nb_degree_of_freedom, nb_points, nb_element);
inte_it = intf.begin_reinterpret(nb_degree_of_freedom, 1, nb_element);
for (UInt el = 0; el < nb_element; ++el, ++J_it, ++f_it, ++inte_it) {
const Matrix<Real> & f = *f_it;
const Matrix<Real> & J = *J_it;
Matrix<Real> & inte_f = *inte_it;
inte_f.mul<false, false>(f, J);
}
delete filtered_J;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline Real IntegratorGauss<_ek_igfem, IOF>::integrate(
const Array<Real> & in_f, GhostType ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
Array<Real> intfv(0, 1);
integrate<type>(in_f, intfv, 1, ghost_type, filter_elements);
UInt nb_values = intfv.getSize();
if (nb_values == 0)
return 0.;
UInt nb_values_to_sum = nb_values >> 1;
std::sort(intfv.begin(), intfv.end());
// as long as the half is not empty
while (nb_values_to_sum) {
UInt remaining = (nb_values - 2 * nb_values_to_sum);
if (remaining)
intfv(nb_values - 2) += intfv(nb_values - 1);
// sum to consecutive values and store the sum in the first half
for (UInt i = 0; i < nb_values_to_sum; ++i) {
intfv(i) = intfv(2 * i) + intfv(2 * i + 1);
}
nb_values = nb_values_to_sum;
nb_values_to_sum >>= 1;
}
AKANTU_DEBUG_OUT();
return intfv(0);
}
/* -------------------------------------------------------------------------- */
template <class IOF>
template <ElementType type>
inline void IntegratorGauss<_ek_igfem, IOF>::integrateOnIntegrationPoints(
const Array<Real> & in_f, Array<Real> & intf, UInt nb_degree_of_freedom,
GhostType ghost_type, const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
UInt nb_element;
const Matrix<Real> & quads = quadrature_points(type, ghost_type);
UInt nb_points = quads.cols();
const Array<Real> & jac_loc = jacobians(type, ghost_type);
Array<Real>::const_scalar_iterator J_it;
Array<Real>::vector_iterator inte_it;
Array<Real>::const_vector_iterator f_it;
Array<Real> * filtered_J = NULL;
if (filter_elements != empty_filter) {
nb_element = filter_elements.getSize();
filtered_J = new Array<Real>(0, jac_loc.getNbComponent());
FEEngine::filterElementalData(mesh, jac_loc, *filtered_J, type, ghost_type,
filter_elements);
J_it = filtered_J->begin();
} else {
nb_element = mesh.getNbElement(type, ghost_type);
J_it = jac_loc.begin();
}
intf.resize(nb_element * nb_points);
f_it = in_f.begin(nb_degree_of_freedom);
inte_it = intf.begin(nb_degree_of_freedom);
for (UInt el = 0; el < nb_element; ++el, ++J_it, ++f_it, ++inte_it) {
const Real & J = *J_it;
const Vector<Real> & f = *f_it;
Vector<Real> & inte_f = *inte_it;
inte_f = f;
inte_f *= J;
}
delete filtered_J;
AKANTU_DEBUG_OUT();
}

Event Timeline