Page MenuHomec4science

aka_array.hh
No OneTemporary

File Metadata

Created
Sat, May 4, 21:09

aka_array.hh

/**
* @file aka_array.hh
*
* @author Till Junge <till.junge@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Tue Jan 16 2018
*
* @brief Array container for Akantu
* This container differs from the std::vector from the fact it as 2 dimensions
* a main dimension and the size stored per entries
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "aka_types.hh"
/* -------------------------------------------------------------------------- */
#include <typeinfo>
#include <vector>
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_ARRAY_HH_
#define AKANTU_ARRAY_HH_
namespace akantu {
/// class that afford to store vectors in static memory
// NOLINTNEXTLINE(cppcoreguidelines-special-member-functions)
class ArrayBase {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
explicit ArrayBase(const ID &id = "") : id(id) {}
ArrayBase(const ArrayBase & other, const ID & id = "") {
this->id = (id.empty()) ? other.id : id;
}
ArrayBase(ArrayBase && other) = default;
ArrayBase & operator=(const ArrayBase & other) = default;
ArrayBase & operator=(ArrayBase && other) noexcept = default;
virtual ~ArrayBase() = default;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// get the amount of space allocated in bytes
virtual UInt getMemorySize() const = 0;
// changed empty to match std::vector empty
inline bool empty() const __attribute__((warn_unused_result)) {
return size_ == 0;
}
/// function to print the containt of the class
virtual void printself(std::ostream & stream, int indent = 0) const = 0;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// Get the Size of the Array
UInt size() const { return size_; }
/// Get the number of components
AKANTU_GET_MACRO(NbComponent, nb_component, UInt);
/// Get the name of th array
AKANTU_GET_MACRO(ID, id, const ID &);
/// Set the name of th array
AKANTU_SET_MACRO(ID, id, const ID &);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// id of the vector
ID id;
/// the size used
UInt size_{0};
/// number of components
UInt nb_component{1};
};
/* -------------------------------------------------------------------------- */
namespace {
template <std::size_t dim, typename T> struct IteratorHelper {};
template <typename T> struct IteratorHelper<0, T> { using type = T; };
template <typename T> struct IteratorHelper<1, T> { using type = Vector<T>; };
template <typename T> struct IteratorHelper<2, T> { using type = Matrix<T>; };
template <typename T> struct IteratorHelper<3, T> {
using type = Tensor3<T>;
};
template <std::size_t dim, typename T>
using IteratorHelper_t = typename IteratorHelper<dim, T>::type;
} // namespace
/* -------------------------------------------------------------------------- */
/* Memory handling layer */
/* -------------------------------------------------------------------------- */
enum class ArrayAllocationType {
_default,
_pod,
};
template <typename T>
struct ArrayAllocationTrait
: public std::conditional_t<
std::is_scalar<T>::value,
std::integral_constant<ArrayAllocationType,
ArrayAllocationType::_pod>,
std::integral_constant<ArrayAllocationType,
ArrayAllocationType::_default>> {};
/* -------------------------------------------------------------------------- */
template <typename T,
ArrayAllocationType allocation_trait = ArrayAllocationTrait<T>::value>
class ArrayDataLayer : public ArrayBase {
public:
using value_type = T;
using reference = value_type &;
using pointer_type = value_type *;
using const_reference = const value_type &;
public:
~ArrayDataLayer() override = default;
/// Allocation of a new vector
explicit ArrayDataLayer(UInt size = 0, UInt nb_component = 1,
const ID & id = "");
/// Allocation of a new vector with a default value
ArrayDataLayer(UInt size, UInt nb_component, const_reference value,
const ID & id = "");
/// Copy constructor (deep copy)
ArrayDataLayer(const ArrayDataLayer & vect, const ID & id = "");
/// Copy constructor (deep copy)
explicit ArrayDataLayer(const std::vector<value_type> & vect);
// copy operator
ArrayDataLayer & operator=(const ArrayDataLayer & other);
// move constructor
ArrayDataLayer(ArrayDataLayer && other) noexcept = default;
// move assign
ArrayDataLayer & operator=(ArrayDataLayer && other) noexcept = default;
protected:
// deallocate the memory
virtual void deallocate() {}
// allocate the memory
virtual void allocate(UInt size, UInt nb_component);
// allocate and initialize the memory
virtual void allocate(UInt size, UInt nb_component, const T & value);
public:
/// append a tuple of size nb_component containing value
inline void push_back(const_reference value);
/// append a vector
// inline void push_back(const value_type new_elem[]);
/// append a Vector or a Matrix
template <template <typename> class C,
typename = std::enable_if_t<aka::is_tensor<C<T>>::value or
aka::is_tensor_proxy<C<T>>::value>>
inline void push_back(const C<T> & new_elem);
/// changes the allocated size but not the size, if new_size = 0, the size is
/// set to min(current_size and reserve size)
virtual void reserve(UInt size, UInt new_size = UInt(-1));
/// change the size of the Array
virtual void resize(UInt size);
/// change the size of the Array and initialize the values
virtual void resize(UInt size, const T & val);
/// get the amount of space allocated in bytes
inline UInt getMemorySize() const override;
/// Get the real size allocated in memory
inline UInt getAllocatedSize() const;
/// give the address of the memory allocated for this vector
T * storage() const { return values; };
protected:
/// allocation type agnostic data access
T * values{nullptr};
/// data storage
std::vector<T> data_storage;
};
/* -------------------------------------------------------------------------- */
/* Actual Array */
/* -------------------------------------------------------------------------- */
template <typename T, bool is_scal> class Array : public ArrayDataLayer<T> {
private:
using parent = ArrayDataLayer<T>;
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
using value_type = typename parent::value_type;
using reference = typename parent::reference;
using pointer_type = typename parent::pointer_type;
using const_reference = typename parent::const_reference;
using array_type = Array<T>;
~Array() override;
Array() : Array(0){};
/// Allocation of a new vector
explicit Array(UInt size, UInt nb_component = 1, const ID & id = "");
/// Allocation of a new vector with a default value
explicit Array(UInt size, UInt nb_component, const_reference value,
const ID & id = "");
/// Copy constructor
Array(const Array & vect, const ID & id = "");
/// Copy constructor (deep copy)
explicit Array(const std::vector<T> & vect);
// copy operator
Array & operator=(const Array & other);
// move constructor
Array(Array && other) noexcept = default;
// move assign
Array & operator=(Array && other) noexcept = default;
/* ------------------------------------------------------------------------ */
/* Iterator */
/* ------------------------------------------------------------------------ */
/// \todo protected: does not compile with intel check why
public:
template <class R, class it, class IR = R,
bool is_tensor_ = aka::is_tensor<std::decay_t<R>>::value>
class iterator_internal;
public:
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
template <typename R = T> class const_iterator;
template <typename R = T> class iterator;
/* ------------------------------------------------------------------------ */
/// iterator for Array of nb_component = 1
using scalar_iterator = iterator<T>;
/// const_iterator for Array of nb_component = 1
using const_scalar_iterator = const_iterator<T>;
/// iterator returning Vectors of size n on entries of Array with
/// nb_component = n
using vector_iterator = iterator<Vector<T>>;
/// const_iterator returning Vectors of n size on entries of Array with
/// nb_component = n
using const_vector_iterator = const_iterator<Vector<T>>;
/// iterator returning Matrices of size (m, n) on entries of Array with
/// nb_component = m*n
using matrix_iterator = iterator<Matrix<T>>;
/// const iterator returning Matrices of size (m, n) on entries of Array with
/// nb_component = m*n
using const_matrix_iterator = const_iterator<Matrix<T>>;
/// iterator returning Tensor3 of size (m, n, k) on entries of Array with
/// nb_component = m*n*k
using tensor3_iterator = iterator<Tensor3<T>>;
/// const iterator returning Tensor3 of size (m, n, k) on entries of Array
/// with nb_component = m*n*k
using const_tensor3_iterator = const_iterator<Tensor3<T>>;
/* ------------------------------------------------------------------------ */
template <typename... Ns> inline decltype(auto) begin(Ns &&... n);
template <typename... Ns> inline decltype(auto) end(Ns &&... n);
template <typename... Ns> inline decltype(auto) begin(Ns &&... n) const;
template <typename... Ns> inline decltype(auto) end(Ns &&... n) const;
template <typename... Ns> inline decltype(auto) begin_reinterpret(Ns &&... n);
template <typename... Ns> inline decltype(auto) end_reinterpret(Ns &&... n);
template <typename... Ns>
inline decltype(auto) begin_reinterpret(Ns &&... n) const;
template <typename... Ns>
inline decltype(auto) end_reinterpret(Ns &&... n) const;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// search elem in the vector, return the position of the first occurrence or
/// -1 if not found
UInt find(const_reference elem) const;
/// @see Array::find(const_reference elem) const
// UInt find(T elem[]) const;
/// append a value to the end of the Array
inline void push_back(const_reference value) { parent::push_back(value); }
/// append a Vector or a Matrix
template <template <typename> class C,
typename = std::enable_if_t<aka::is_tensor<C<T>>::value or
aka::is_tensor_proxy<C<T>>::value>>
inline void push_back(const C<T> & new_elem) {
parent::push_back(new_elem);
}
/// append the content of the iterator at the end of the Array
template <typename Ret> inline void push_back(const iterator<Ret> & it) {
push_back(*it);
}
/// erase the value at position i
inline void erase(UInt i);
/// ask Nico, clarify
template <typename R> inline iterator<R> erase(const iterator<R> & it);
/// @see Array::find(const_reference elem) const
template <template <typename> class C,
typename = std::enable_if_t<aka::is_tensor<C<T>>::value or
aka::is_tensor_proxy<C<T>>::value>>
inline UInt find(const C<T> & elem);
/// set all entries of the array to the value t
/// @param t value to fill the array with
inline void set(T t) {
std::fill_n(this->values, this->size_ * this->nb_component, t);
}
/// set the array to T{}
inline void zero() { this->set({}); }
/// resize the array to 0
inline void clear() { this->resize(0); }
/// set all tuples of the array to a given vector or matrix
/// @param vm Matrix or Vector to fill the array with
template <template <typename> class C,
typename = std::enable_if_t<aka::is_tensor<C<T>>::value or
aka::is_tensor_proxy<C<T>>::value>>
inline void set(const C<T> & vm);
/// Append the content of the other array to the current one
void append(const Array<T> & other);
/// copy another Array in the current Array, the no_sanity_check allows you to
/// force the copy in cases where you know what you do with two non matching
/// Arrays in terms of n
void copy(const Array<T, is_scal> & other, bool no_sanity_check = false);
/// function to print the containt of the class
void printself(std::ostream & stream, int indent = 0) const override;
/* ------------------------------------------------------------------------ */
/* Operators */
/* ------------------------------------------------------------------------ */
public:
/// substraction entry-wise
Array<T, is_scal> & operator-=(const Array<T, is_scal> & other);
/// addition entry-wise
Array<T, is_scal> & operator+=(const Array<T, is_scal> & other);
/// multiply evry entry by alpha
Array<T, is_scal> & operator*=(const T & alpha);
/// check if the array are identical entry-wise
bool operator==(const Array<T, is_scal> & other) const;
/// @see Array::operator==(const Array<T, is_scal> & other) const
bool operator!=(const Array<T, is_scal> & other) const;
/// return a reference to the j-th entry of the i-th tuple
inline reference operator()(UInt i, UInt j = 0);
/// return a const reference to the j-th entry of the i-th tuple
inline const_reference operator()(UInt i, UInt j = 0) const;
/// return a reference to the ith component of the 1D array
inline reference operator[](UInt i);
/// return a const reference to the ith component of the 1D array
inline const_reference operator[](UInt i) const;
};
/* -------------------------------------------------------------------------- */
/* Inline Functions Array<T, is_scal> */
/* -------------------------------------------------------------------------- */
template <typename T, bool is_scal>
inline std::ostream & operator<<(std::ostream & stream,
const Array<T, is_scal> & _this) {
_this.printself(stream);
return stream;
}
/* -------------------------------------------------------------------------- */
/* Inline Functions ArrayBase */
/* -------------------------------------------------------------------------- */
inline std::ostream & operator<<(std::ostream & stream,
const ArrayBase & _this) {
_this.printself(stream);
return stream;
}
} // namespace akantu
#include "aka_array_tmpl.hh"
#endif /* AKANTU_ARRAY_HH_ */

Event Timeline