Page MenuHomec4science

aka_array.hh
No OneTemporary

File Metadata

Created
Fri, May 3, 23:21

aka_array.hh

/**
* @file aka_array.hh
*
* @author Till Junge <till.junge@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Fri Jan 22 2016
*
* @brief Array container for Akantu
* This container differs from the std::vector from the fact it as 2 dimensions
* a main dimension and the size stored per entries
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_VECTOR_HH__
#define __AKANTU_VECTOR_HH__
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
/* -------------------------------------------------------------------------- */
#include <typeinfo>
#include <vector>
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
/// class that afford to store vectors in static memory
class ArrayBase {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
ArrayBase(const ID & id = "");
virtual ~ArrayBase();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// get the amount of space allocated in bytes
inline UInt getMemorySize() const;
/// set the size to zero without freeing the allocated space
inline void empty();
/// function to print the containt of the class
virtual void printself(std::ostream & stream, int indent = 0) const;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// Get the real size allocated in memory
AKANTU_GET_MACRO(AllocatedSize, allocated_size, UInt);
/// Get the Size of the Array
AKANTU_GET_MACRO(Size, size, UInt);
/// Get the number of components
AKANTU_GET_MACRO(NbComponent, nb_component, UInt);
/// Get the name of th array
AKANTU_GET_MACRO(ID, id, const ID &);
/// Set the name of th array
AKANTU_SET_MACRO(ID, id, const ID &);
// AKANTU_GET_MACRO(Tag, tag, const std::string &);
// AKANTU_SET_MACRO(Tag, tag, const std::string &);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// id of the vector
ID id;
/// the size allocated
UInt allocated_size;
/// the size used
UInt size;
/// number of components
UInt nb_component;
/// size of the stored type
UInt size_of_type;
// /// User defined tag
// std::string tag;
};
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template <typename T, bool is_scal> class Array : public ArrayBase {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
typedef T value_type;
typedef value_type & reference;
typedef value_type * pointer_type;
typedef const value_type & const_reference;
/// Allocation of a new vector
inline Array(UInt size = 0, UInt nb_component = 1, const ID & id = "");
/// Allocation of a new vector with a default value
Array(UInt size, UInt nb_component, const value_type def_values[],
const ID & id = "");
/// Allocation of a new vector with a default value
Array(UInt size, UInt nb_component, const_reference value,
const ID & id = "");
/// Copy constructor (deep copy if deep=true)
Array(const Array<value_type, is_scal> & vect, bool deep = true,
const ID & id = "");
#ifndef SWIG
/// Copy constructor (deep copy)
Array(const std::vector<value_type> & vect);
#endif
virtual inline ~Array();
Array & operator=(const Array & a) {
/// this is to let STL allocate and copy arrays in the case of
/// std::vector::resize
AKANTU_DEBUG_ASSERT(this->size == 0, "Cannot copy akantu::Array");
return const_cast<Array &>(a);
}
/* ------------------------------------------------------------------------ */
/* Iterator */
/* ------------------------------------------------------------------------ */
/// \todo protected: does not compile with intel check why
public:
template <class R, class IR = R, bool issame = is_same<IR, T>::value>
class iterator_internal;
public:
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
template <typename R = T> class const_iterator;
template <typename R = T> class iterator;
/* ------------------------------------------------------------------------ */
/// iterator for Array of nb_component = 1
typedef iterator<T> scalar_iterator;
/// const_iterator for Array of nb_component = 1
typedef const_iterator<T> const_scalar_iterator;
/// iterator rerturning Vectors of size n on entries of Array with
/// nb_component = n
typedef iterator<Vector<T> > vector_iterator;
/// const_iterator rerturning Vectors of n size on entries of Array with
/// nb_component = n
typedef const_iterator<Vector<T> > const_vector_iterator;
/// iterator rerturning Matrices of size (m, n) on entries of Array with
/// nb_component = m*n
typedef iterator<Matrix<T> > matrix_iterator;
/// const iterator rerturning Matrices of size (m, n) on entries of Array with
/// nb_component = m*n
typedef const_iterator<Matrix<T> > const_matrix_iterator;
/* ------------------------------------------------------------------------ */
/// Get an iterator that behaves like a pointer T * to the first entry
inline scalar_iterator begin();
/// Get an iterator that behaves like a pointer T * to the end of the Array
inline scalar_iterator end();
/// Get a const_iterator to the beginging of an Array of scalar
inline const_scalar_iterator begin() const;
/// Get a const_iterator to the end of an Array of scalar
inline const_scalar_iterator end() const;
/* ------------------------------------------------------------------------ */
/// Get a vector_iterator on the begining of the Array
inline vector_iterator begin(UInt n);
/// Get a vector_iterator on the end of the Array
inline vector_iterator end(UInt n);
/// Get a vector_iterator on the begining of the Array
inline const_vector_iterator begin(UInt n) const;
/// Get a vector_iterator on the end of the Array
inline const_vector_iterator end(UInt n) const;
/// Get a vector_iterator on the begining of the Array considered of shape
/// (new_size, n)
inline vector_iterator begin_reinterpret(UInt n, UInt new_size);
/// Get a vector_iterator on the end of the Array considered of shape
/// (new_size, n)
inline vector_iterator end_reinterpret(UInt n, UInt new_size);
/// Get a const_vector_iterator on the begining of the Array considered of
/// shape (new_size, n)
inline const_vector_iterator begin_reinterpret(UInt n, UInt new_size) const;
/// Get a const_vector_iterator on the end of the Array considered of shape
/// (new_size, n)
inline const_vector_iterator end_reinterpret(UInt n, UInt new_size) const;
/* ------------------------------------------------------------------------ */
/// Get a matrix_iterator on the begining of the Array (Matrices of size (m,
/// n))
inline matrix_iterator begin(UInt m, UInt n);
/// Get a matrix_iterator on the end of the Array (Matrices of size (m, n))
inline matrix_iterator end(UInt m, UInt n);
/// Get a const_matrix_iterator on the begining of the Array (Matrices of size
/// (m, n))
inline const_matrix_iterator begin(UInt m, UInt n) const;
/// Get a const_matrix_iterator on the end of the Array (Matrices of size (m,
/// n))
inline const_matrix_iterator end(UInt m, UInt n) const;
/// Get a matrix_iterator on the begining of the Array considered of shape
/// (new_size, m*n)
inline matrix_iterator begin_reinterpret(UInt m, UInt n, UInt size);
/// Get a matrix_iterator on the end of the Array considered of shape
/// (new_size, m*n)
inline matrix_iterator end_reinterpret(UInt m, UInt n, UInt size);
/// Get a const_matrix_iterator on the begining of the Array considered of
/// shape (new_size, m*n)
inline const_matrix_iterator begin_reinterpret(UInt m, UInt n,
UInt size) const;
/// Get a const_matrix_iterator on the end of the Array considered of shape
/// (new_size, m*n)
inline const_matrix_iterator end_reinterpret(UInt m, UInt n, UInt size) const;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// append a tuple of size nb_component containing value
inline void push_back(const_reference value);
/// append a vector
inline void push_back(const value_type new_elem[]);
/// append a Vector or a Matrix
template <template <typename> class C>
inline void push_back(const C<T> & new_elem);
/// append the value of the iterator
template <typename Ret> inline void push_back(const iterator<Ret> & it);
/// erase the value at position i
inline void erase(UInt i);
/// ask Nico, clarify
template <typename R> inline iterator<R> erase(const iterator<R> & it);
/// change the size of the Array
virtual void resize(UInt size);
/// change the number of components by interlacing data
/// @param multiplicator number of interlaced components add
/// @param block_size blocks of data in the array
/// Examaple for block_size = 2, multiplicator = 2
/// array = oo oo oo -> new array = oo nn nn oo nn nn oo nn nn
void extendComponentsInterlaced(UInt multiplicator, UInt stride);
/// search elem in the vector, return the position of the first occurrence or
/// -1 if not found
Int find(const_reference elem)
const; /// @see Array::find(const_reference elem) const
Int find(T elem[]) const;
/// @see Array::find(const_reference elem) const
template <template <typename> class C> inline Int find(const C<T> & elem);
/// set all entries of the array to 0
inline void clear() { std::fill_n(values, size * nb_component, T()); }
/// set all entries of the array to the value t
/// @param t value to fill the array with
inline void set(T t) { std::fill_n(values, size * nb_component, t); }
/// set all tuples of the array to a given vector or matrix
/// @param vm Matrix or Vector to fill the array with
template <template <typename> class C> inline void set(const C<T> & vm);
/// copy another Array in the current Array, the no_sanity_check allows you to
/// force the copy in cases where you know what you do with two non matching
/// Arrays in terms of n
void copy(const Array<T, is_scal> & other, bool no_sanity_check = false);
/// give the address of the memory allocated for this vector
T * storage() const { return values; };
/// function to print the containt of the class
virtual void printself(std::ostream & stream, int indent = 0) const;
protected:
/// perform the allocation for the constructors
void allocate(UInt size, UInt nb_component = 1);
/// resize without initializing the memory
void resizeUnitialized(UInt new_size);
/* ------------------------------------------------------------------------ */
/* Operators */
/* ------------------------------------------------------------------------ */
public:
/// substraction entry-wise
Array<T, is_scal> & operator-=(const Array<T, is_scal> & other);
/// addition entry-wise
Array<T, is_scal> & operator+=(const Array<T, is_scal> & other);
/// multiply evry entry by alpha
Array<T, is_scal> & operator*=(const T & alpha);
/// check if the array are identical entry-wise
bool operator==(const Array<T, is_scal> & other) const;
/// @see Array::operator==(const Array<T, is_scal> & other) const
bool operator!=(const Array<T, is_scal> & other) const;
/// return a reference to the j-th entry of the i-th tuple
inline reference operator()(UInt i, UInt j = 0);
/// return a const reference to the j-th entry of the i-th tuple
inline const_reference operator()(UInt i, UInt j = 0) const;
/// return a reference to the ith component of the 1D array
inline reference operator[](UInt i);
/// return a const reference to the ith component of the 1D array
inline const_reference operator[](UInt i) const;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// array of values
T * values; // /!\ very dangerous
};
#include "aka_array_tmpl.hh"
__END_AKANTU__
#include "aka_types.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
/* Inline Functions Array<T, is_scal> */
/* -------------------------------------------------------------------------- */
template <typename T, bool is_scal>
inline std::ostream & operator<<(std::ostream & stream,
const Array<T, is_scal> & _this) {
_this.printself(stream);
return stream;
}
/* -------------------------------------------------------------------------- */
/* Inline Functions ArrayBase */
/* -------------------------------------------------------------------------- */
inline std::ostream & operator<<(std::ostream & stream,
const ArrayBase & _this) {
_this.printself(stream);
return stream;
}
__END_AKANTU__
#endif /* __AKANTU_VECTOR_HH__ */

Event Timeline