Page MenuHomec4science

aka_array_tmpl.hh
No OneTemporary

File Metadata

Created
Mon, May 6, 09:43

aka_array_tmpl.hh

/**
* @file aka_array_tmpl.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Jul 15 2010
* @date last modification: Fri Jan 22 2016
*
* @brief Inline functions of the classes Array<T> and ArrayBase
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
/* Inline Functions Array<T> */
/* -------------------------------------------------------------------------- */
#include "aka_array.hh"
/* -------------------------------------------------------------------------- */
#include <memory>
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_AKA_ARRAY_TMPL_HH__
#define __AKANTU_AKA_ARRAY_TMPL_HH__
namespace akantu {
namespace debug {
struct ArrayException : public Exception {};
} // namespace debug
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
inline T & Array<T, is_scal>::operator()(UInt i, UInt j) {
AKANTU_DEBUG_ASSERT(size_ > 0, "The array \"" << id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < size_) && (j < nb_component),
"The value at position ["
<< i << "," << j << "] is out of range in array \""
<< id << "\"");
return values[i * nb_component + j];
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
inline const T & Array<T, is_scal>::operator()(UInt i, UInt j) const {
AKANTU_DEBUG_ASSERT(size_ > 0, "The array \"" << id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < size_) && (j < nb_component),
"The value at position ["
<< i << "," << j << "] is out of range in array \""
<< id << "\"");
return values[i * nb_component + j];
}
template <class T, bool is_scal>
inline T & Array<T, is_scal>::operator[](UInt i) {
AKANTU_DEBUG_ASSERT(size_ > 0, "The array \"" << id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < size_ * nb_component),
"The value at position ["
<< i << "] is out of range in array \"" << id
<< "\"");
return values[i];
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
inline const T & Array<T, is_scal>::operator[](UInt i) const {
AKANTU_DEBUG_ASSERT(size_ > 0, "The array \"" << id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < size_ * nb_component),
"The value at position ["
<< i << "] is out of range in array \"" << id
<< "\"");
return values[i];
}
/* -------------------------------------------------------------------------- */
/**
* append a tuple to the array with the value value for all components
* @param value the new last tuple or the array will contain nb_component copies
* of value
*/
template <class T, bool is_scal>
inline void Array<T, is_scal>::push_back(const T & value) {
resizeUnitialized(size_ + 1, true, value);
}
/* -------------------------------------------------------------------------- */
/**
* append a tuple to the array
* @param new_elem a C-array containing the values to be copied to the end of
* the array */
// template <class T, bool is_scal>
// inline void Array<T, is_scal>::push_back(const T new_elem[]) {
// UInt pos = size_;
// resizeUnitialized(size_ + 1, false);
// T * tmp = values + nb_component * pos;
// std::uninitialized_copy(new_elem, new_elem + nb_component, tmp);
// }
/* -------------------------------------------------------------------------- */
#ifndef SWIG
/**
* append a matrix or a vector to the array
* @param new_elem a reference to a Matrix<T> or Vector<T> */
template <class T, bool is_scal>
template <template <typename> class C, typename>
inline void Array<T, is_scal>::push_back(const C<T> & new_elem) {
AKANTU_DEBUG_ASSERT(
nb_component == new_elem.size(),
"The vector("
<< new_elem.size()
<< ") as not a size compatible with the Array (nb_component="
<< nb_component << ").");
UInt pos = size_;
resizeUnitialized(size_ + 1, false);
T * tmp = values + nb_component * pos;
std::uninitialized_copy(new_elem.storage(), new_elem.storage() + nb_component,
tmp);
}
/* -------------------------------------------------------------------------- */
/**
* append a tuple to the array
* @param it an iterator to the tuple to be copied to the end of the array */
template <class T, bool is_scal>
template <class Ret>
inline void
Array<T, is_scal>::push_back(const Array<T, is_scal>::iterator<Ret> & it) {
UInt pos = size_;
resizeUnitialized(size_ + 1, false);
T * tmp = values + nb_component * pos;
T * new_elem = it.data();
std::uninitialized_copy(new_elem, new_elem + nb_component, tmp);
}
#endif
/* -------------------------------------------------------------------------- */
/**
* erase an element. If the erased element is not the last of the array, the
* last element is moved into the hole in order to maintain contiguity. This
* may invalidate existing iterators (For instance an iterator obtained by
* Array::end() is no longer correct) and will change the order of the
* elements.
* @param i index of element to erase
*/
template <class T, bool is_scal> inline void Array<T, is_scal>::erase(UInt i) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT((size_ > 0), "The array is empty");
AKANTU_DEBUG_ASSERT((i < size_), "The element at position ["
<< i << "] is out of range (" << i
<< ">=" << size_ << ")");
if (i != (size_ - 1)) {
for (UInt j = 0; j < nb_component; ++j) {
values[i * nb_component + j] = values[(size_ - 1) * nb_component + j];
}
}
resize(size_ - 1);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
/**
* Subtract another array entry by entry from this array in place. Both arrays
* must
* have the same size and nb_component. If the arrays have different shapes,
* code compiled in debug mode will throw an expeption and optimised code
* will behave in an unpredicted manner
* @param other array to subtract from this
* @return reference to modified this
*/
template <class T, bool is_scal>
Array<T, is_scal> & Array<T, is_scal>::
operator-=(const Array<T, is_scal> & vect) {
AKANTU_DEBUG_ASSERT((size_ == vect.size_) &&
(nb_component == vect.nb_component),
"The too array don't have the same sizes");
T * a = values;
T * b = vect.storage();
for (UInt i = 0; i < size_ * nb_component; ++i) {
*a -= *b;
++a;
++b;
}
return *this;
}
/* -------------------------------------------------------------------------- */
/**
* Add another array entry by entry to this array in place. Both arrays must
* have the same size and nb_component. If the arrays have different shapes,
* code compiled in debug mode will throw an expeption and optimised code
* will behave in an unpredicted manner
* @param other array to add to this
* @return reference to modified this
*/
template <class T, bool is_scal>
Array<T, is_scal> & Array<T, is_scal>::
operator+=(const Array<T, is_scal> & vect) {
AKANTU_DEBUG_ASSERT((size_ == vect.size) &&
(nb_component == vect.nb_component),
"The too array don't have the same sizes");
T * a = values;
T * b = vect.storage();
for (UInt i = 0; i < size_ * nb_component; ++i) {
*a++ += *b++;
}
return *this;
}
/* -------------------------------------------------------------------------- */
/**
* Multiply all entries of this array by a scalar in place
* @param alpha scalar multiplicant
* @return reference to modified this
*/
template <class T, bool is_scal>
Array<T, is_scal> & Array<T, is_scal>::operator*=(const T & alpha) {
T * a = values;
for (UInt i = 0; i < size_ * nb_component; ++i) {
*a++ *= alpha;
}
return *this;
}
/* -------------------------------------------------------------------------- */
/**
* Compare this array element by element to another.
* @param other array to compare to
* @return true it all element are equal and arrays have the same shape, else
* false
*/
template <class T, bool is_scal>
bool Array<T, is_scal>::operator==(const Array<T, is_scal> & array) const {
bool equal = nb_component == array.nb_component && size_ == array.size_ &&
id == array.id;
if (!equal)
return false;
if (values == array.storage())
return true;
else
return std::equal(values, values + size_ * nb_component, array.storage());
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
bool Array<T, is_scal>::operator!=(const Array<T, is_scal> & array) const {
return !operator==(array);
}
/* -------------------------------------------------------------------------- */
#ifndef SWIG
/**
* set all tuples of the array to a given vector or matrix
* @param vm Matrix or Vector to fill the array with
*/
template <class T, bool is_scal>
template <template <typename> class C, typename>
inline void Array<T, is_scal>::set(const C<T> & vm) {
AKANTU_DEBUG_ASSERT(
nb_component == vm.size(),
"The size of the object does not match the number of components");
for (T * it = values; it < values + nb_component * size_;
it += nb_component) {
std::copy(vm.storage(), vm.storage() + nb_component, it);
}
}
#endif
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
void Array<T, is_scal>::append(const Array<T> & other) {
AKANTU_DEBUG_ASSERT(
nb_component == other.nb_component,
"Cannot append an array with a different number of component");
UInt old_size = this->size_;
this->resizeUnitialized(this->size_ + other.size(), false);
T * tmp = values + nb_component * old_size;
std::uninitialized_copy(other.storage(),
other.storage() + other.size() * nb_component, tmp);
}
/* -------------------------------------------------------------------------- */
/* Functions Array<T, is_scal> */
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
Array<T, is_scal>::Array(UInt size, UInt nb_component, const ID & id)
: ArrayBase(id), values(nullptr) {
AKANTU_DEBUG_IN();
allocate(size, nb_component);
if (!is_scal) {
T val = T();
std::uninitialized_fill(values, values + size * nb_component, val);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
Array<T, is_scal>::Array(UInt size, UInt nb_component, const T def_values[],
const ID & id)
: ArrayBase(id), values(NULL) {
AKANTU_DEBUG_IN();
allocate(size, nb_component);
T * tmp = values;
for (UInt i = 0; i < size; ++i) {
tmp = values + nb_component * i;
std::uninitialized_copy(def_values, def_values + nb_component, tmp);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
Array<T, is_scal>::Array(UInt size, UInt nb_component, const T & value,
const ID & id)
: ArrayBase(id), values(nullptr) {
AKANTU_DEBUG_IN();
allocate(size, nb_component);
std::uninitialized_fill_n(values, size * nb_component, value);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
Array<T, is_scal>::Array(const Array<T, is_scal> & vect, bool deep,
const ID & id)
: ArrayBase(vect) {
AKANTU_DEBUG_IN();
this->id = (id == "") ? vect.id : id;
if (deep) {
allocate(vect.size_, vect.nb_component);
T * tmp = values;
std::uninitialized_copy(vect.storage(),
vect.storage() + size_ * nb_component, tmp);
} else {
this->values = vect.storage();
this->size_ = vect.size_;
this->nb_component = vect.nb_component;
this->allocated_size = vect.allocated_size;
this->size_of_type = vect.size_of_type;
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
#ifndef SWIG
template <class T, bool is_scal>
Array<T, is_scal>::Array(const std::vector<T> & vect) {
AKANTU_DEBUG_IN();
this->id = "";
allocate(vect.size(), 1);
T * tmp = values;
std::uninitialized_copy(&(vect[0]), &(vect[size_ - 1]), tmp);
AKANTU_DEBUG_OUT();
}
#endif
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal> Array<T, is_scal>::~Array() {
AKANTU_DEBUG_IN();
AKANTU_DEBUG(dblAccessory,
"Freeing " << printMemorySize<T>(allocated_size * nb_component)
<< " (" << id << ")");
if (values) {
if (!is_scal)
for (UInt i = 0; i < size_ * nb_component; ++i) {
T * obj = values + i;
obj->~T();
}
free(values);
}
size_ = allocated_size = 0;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
/**
* perform the allocation for the constructors
* @param size is the size of the array
* @param nb_component is the number of component of the array
*/
template <class T, bool is_scal>
void Array<T, is_scal>::allocate(UInt size, UInt nb_component) {
AKANTU_DEBUG_IN();
if (size == 0) {
values = nullptr;
} else {
values = static_cast<T *>(malloc(nb_component * size * sizeof(T)));
AKANTU_DEBUG_ASSERT(values != nullptr,
"Cannot allocate "
<< printMemorySize<T>(size * nb_component) << " ("
<< id << ")");
}
if (values == nullptr) {
this->size_ = this->allocated_size = 0;
} else {
AKANTU_DEBUG(dblAccessory, "Allocated "
<< printMemorySize<T>(size * nb_component)
<< " (" << id << ")");
this->size_ = this->allocated_size = size;
}
this->size_of_type = sizeof(T);
this->nb_component = nb_component;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
void Array<T, is_scal>::reserve(UInt new_size) {
UInt tmp_size = this->size_;
resizeUnitialized(new_size, false);
this->size_ = tmp_size;
}
/* -------------------------------------------------------------------------- */
/**
* change the size of the array and allocate or free memory if needed. If the
* size increases, the new tuples are filled with zeros
* @param new_size new number of tuples contained in the array */
template <class T, bool is_scal> void Array<T, is_scal>::resize(UInt new_size) {
resizeUnitialized(new_size, !is_scal);
}
/* -------------------------------------------------------------------------- */
/**
* change the size of the array and allocate or free memory if needed. If the
* size increases, the new tuples are filled with zeros
* @param new_size new number of tuples contained in the array */
template <class T, bool is_scal>
void Array<T, is_scal>::resize(UInt new_size, const T & val) {
this->resizeUnitialized(new_size, true, val);
}
/* -------------------------------------------------------------------------- */
/**
* change the size of the array and allocate or free memory if needed.
* @param new_size new number of tuples contained in the array */
template <class T, bool is_scal>
void Array<T, is_scal>::resizeUnitialized(UInt new_size, bool fill,
const T & val) {
// AKANTU_DEBUG_IN();
// free some memory
if (new_size <= allocated_size) {
if (!is_scal) {
T * old_values = values;
if (new_size < size_) {
for (UInt i = new_size * nb_component; i < size_ * nb_component; ++i) {
T * obj = old_values + i;
obj->~T();
}
}
}
if (allocated_size - new_size > AKANTU_MIN_ALLOCATION) {
AKANTU_DEBUG(dblAccessory,
"Freeing " << printMemorySize<T>((allocated_size - size_) *
nb_component)
<< " (" << id << ")");
// Normally there are no allocation problem when reducing an array
if (new_size == 0) {
free(values);
values = nullptr;
} else {
auto * tmp_ptr = static_cast<T *>(
realloc(values, new_size * nb_component * sizeof(T)));
if (tmp_ptr == nullptr) {
AKANTU_EXCEPTION("Cannot free data ("
<< id << ")"
<< " [current allocated size : " << allocated_size
<< " | "
<< "requested size : " << new_size << "]");
}
values = tmp_ptr;
}
allocated_size = new_size;
}
} else {
// allocate more memory
UInt size_to_alloc = (new_size - allocated_size < AKANTU_MIN_ALLOCATION)
? allocated_size + AKANTU_MIN_ALLOCATION
: new_size;
auto * tmp_ptr = static_cast<T *>(
realloc(values, size_to_alloc * nb_component * sizeof(T)));
AKANTU_DEBUG_ASSERT(
tmp_ptr != nullptr,
"Cannot allocate " << printMemorySize<T>(size_to_alloc * nb_component));
if (tmp_ptr == nullptr) {
AKANTU_DEBUG_ERROR("Cannot allocate more data ("
<< id << ")"
<< " [current allocated size : " << allocated_size
<< " | "
<< "requested size : " << new_size << "]");
}
AKANTU_DEBUG(dblAccessory,
"Allocating " << printMemorySize<T>(
(size_to_alloc - allocated_size) * nb_component));
allocated_size = size_to_alloc;
values = tmp_ptr;
}
if (fill && this->size_ < new_size) {
std::uninitialized_fill(values + size_ * nb_component,
values + new_size * nb_component, val);
}
size_ = new_size;
// AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
/**
* change the number of components by interlacing data
* @param multiplicator number of interlaced components add
* @param block_size blocks of data in the array
* Examaple for block_size = 2, multiplicator = 2
* array = oo oo oo -> new array = oo nn nn oo nn nn oo nn nn */
template <class T, bool is_scal>
void Array<T, is_scal>::extendComponentsInterlaced(UInt multiplicator,
UInt block_size) {
AKANTU_DEBUG_IN();
if (multiplicator == 1)
return;
AKANTU_DEBUG_ASSERT(multiplicator > 1, "invalid multiplicator");
AKANTU_DEBUG_ASSERT(nb_component % block_size == 0,
"stride must divide actual number of components");
values = static_cast<T *>(
realloc(values, nb_component * multiplicator * size_ * sizeof(T)));
UInt new_component = nb_component / block_size * multiplicator;
for (UInt i = 0, k = size_ - 1; i < size_; ++i, --k) {
for (UInt j = 0; j < new_component; ++j) {
UInt m = new_component - j - 1;
UInt n = m / multiplicator;
for (UInt l = 0, p = block_size - 1; l < block_size; ++l, --p) {
values[k * nb_component * multiplicator + m * block_size + p] =
values[k * nb_component + n * block_size + p];
}
}
}
nb_component = nb_component * multiplicator;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
/**
* search elem in the array, return the position of the first occurrence or
* -1 if not found
* @param elem the element to look for
* @return index of the first occurrence of elem or -1 if elem is not present
*/
template <class T, bool is_scal>
UInt Array<T, is_scal>::find(const T & elem) const {
AKANTU_DEBUG_IN();
auto begin = this->begin();
auto end = this->end();
auto it = std::find(begin, end, elem);
AKANTU_DEBUG_OUT();
return (it != end) ? it - begin : UInt(-1);
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal> UInt Array<T, is_scal>::find(T elem[]) const {
AKANTU_DEBUG_IN();
T * it = values;
UInt i = 0;
for (; i < size_; ++i) {
if (*it == elem[0]) {
T * cit = it;
UInt c = 0;
for (; (c < nb_component) && (*cit == elem[c]); ++c, ++cit)
;
if (c == nb_component) {
AKANTU_DEBUG_OUT();
return i;
}
}
it += nb_component;
}
return UInt(-1);
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <template <typename> class C, typename>
inline UInt Array<T, is_scal>::find(const C<T> & elem) {
AKANTU_DEBUG_ASSERT(elem.size() == nb_component,
"Cannot find an element with a wrong size ("
<< elem.size() << ") != " << nb_component);
return this->find(elem.storage());
}
/* -------------------------------------------------------------------------- */
/**
* copy the content of another array. This overwrites the current content.
* @param other Array to copy into this array. It has to have the same
* nb_component as this. If compiled in debug mode, an incorrect other will
* result in an exception being thrown. Optimised code may result in
* unpredicted behaviour.
*/
template <class T, bool is_scal>
void Array<T, is_scal>::copy(const Array<T, is_scal> & vect,
bool no_sanity_check) {
AKANTU_DEBUG_IN();
if (!no_sanity_check)
if (vect.nb_component != nb_component)
AKANTU_DEBUG_ERROR(
"The two arrays do not have the same number of components");
resize((vect.size_ * vect.nb_component) / nb_component);
T * tmp = values;
std::uninitialized_copy(vect.storage(), vect.storage() + size_ * nb_component,
tmp);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <bool is_scal> class ArrayPrintHelper {
public:
template <typename T>
static void print_content(const Array<T> & vect, std::ostream & stream,
int indent) {
if (AKANTU_DEBUG_TEST(dblDump) || AKANTU_DEBUG_LEVEL_IS_TEST()) {
std::string space;
for (Int i = 0; i < indent; i++, space += AKANTU_INDENT)
;
stream << space << " + values : {";
for (UInt i = 0; i < vect.size(); ++i) {
stream << "{";
for (UInt j = 0; j < vect.getNbComponent(); ++j) {
stream << vect(i, j);
if (j != vect.getNbComponent() - 1)
stream << ", ";
}
stream << "}";
if (i != vect.size() - 1)
stream << ", ";
}
stream << "}" << std::endl;
}
}
};
template <> class ArrayPrintHelper<false> {
public:
template <typename T>
static void print_content(__attribute__((unused)) const Array<T> & vect,
__attribute__((unused)) std::ostream & stream,
__attribute__((unused)) int indent) {}
};
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
void Array<T, is_scal>::printself(std::ostream & stream, int indent) const {
std::string space;
for (Int i = 0; i < indent; i++, space += AKANTU_INDENT)
;
std::streamsize prec = stream.precision();
std::ios_base::fmtflags ff = stream.flags();
stream.setf(std::ios_base::showbase);
stream.precision(2);
stream << space << "Array<" << debug::demangle(typeid(T).name()) << "> ["
<< std::endl;
stream << space << " + id : " << this->id << std::endl;
stream << space << " + size : " << this->size_ << std::endl;
stream << space << " + nb_component : " << this->nb_component << std::endl;
stream << space << " + allocated size : " << this->allocated_size
<< std::endl;
stream << space << " + memory size : "
<< printMemorySize<T>(allocated_size * nb_component) << std::endl;
if (!AKANTU_DEBUG_LEVEL_IS_TEST())
stream << space << " + address : " << std::hex << this->values
<< std::dec << std::endl;
stream.precision(prec);
stream.flags(ff);
ArrayPrintHelper<is_scal>::print_content(*this, stream, indent);
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
/* Inline Functions ArrayBase */
/* -------------------------------------------------------------------------- */
inline UInt ArrayBase::getMemorySize() const {
return allocated_size * nb_component * size_of_type;
}
inline void ArrayBase::empty() { size_ = 0; }
#ifndef SWIG
/* -------------------------------------------------------------------------- */
/* Iterators */
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <class R, class daughter, class IR, bool is_tensor>
class Array<T, is_scal>::iterator_internal {
public:
using value_type = R;
using pointer = R *;
using reference = R &;
using proxy = typename R::proxy;
using const_proxy = const typename R::proxy;
using const_reference = const R &;
using internal_value_type = IR;
using internal_pointer = IR *;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
public:
iterator_internal() = default;
iterator_internal(pointer_type data, UInt _offset)
: _offset(_offset), initial(data), ret(nullptr), ret_ptr(data) {
AKANTU_DEBUG_ERROR(
"The constructor should never be called it is just an ugly trick...");
}
iterator_internal(std::unique_ptr<internal_value_type> && wrapped)
: _offset(wrapped->size()), initial(wrapped->storage()),
ret(std::move(wrapped)), ret_ptr(ret->storage()) {}
iterator_internal(const iterator_internal & it) {
if (this != &it) {
this->_offset = it._offset;
this->initial = it.initial;
this->ret_ptr = it.ret_ptr;
this->ret = std::make_unique<internal_value_type>(*it.ret, false);
}
}
iterator_internal(iterator_internal && it) = default;
virtual ~iterator_internal() = default;
inline iterator_internal & operator=(const iterator_internal & it) {
if (this != &it) {
this->_offset = it._offset;
this->initial = it.initial;
this->ret_ptr = it.ret_ptr;
if (this->ret)
this->ret->shallowCopy(*it.ret);
else
this->ret = std::make_unique<internal_value_type>(*it.ret, false);
}
return *this;
}
UInt getCurrentIndex() {
return (this->ret_ptr - this->initial) / this->_offset;
};
inline reference operator*() {
ret->values = ret_ptr;
return *ret;
};
inline const_reference operator*() const {
ret->values = ret_ptr;
return *ret;
};
inline pointer operator->() {
ret->values = ret_ptr;
return ret.get();
};
inline daughter & operator++() {
ret_ptr += _offset;
return static_cast<daughter &>(*this);
};
inline daughter & operator--() {
ret_ptr -= _offset;
return static_cast<daughter &>(*this);
};
inline daughter & operator+=(const UInt n) {
ret_ptr += _offset * n;
return static_cast<daughter &>(*this);
}
inline daughter & operator-=(const UInt n) {
ret_ptr -= _offset * n;
return static_cast<daughter &>(*this);
}
inline proxy operator[](const UInt n) {
ret->values = ret_ptr + n * _offset;
return proxy(*ret);
}
inline const_proxy operator[](const UInt n) const {
ret->values = ret_ptr + n * _offset;
return const_proxy(*ret);
}
inline bool operator==(const iterator_internal & other) const {
return this->ret_ptr == other.ret_ptr;
}
inline bool operator!=(const iterator_internal & other) const {
return this->ret_ptr != other.ret_ptr;
}
inline bool operator<(const iterator_internal & other) const {
return this->ret_ptr < other.ret_ptr;
}
inline bool operator<=(const iterator_internal & other) const {
return this->ret_ptr <= other.ret_ptr;
}
inline bool operator>(const iterator_internal & other) const {
return this->ret_ptr > other.ret_ptr;
}
inline bool operator>=(const iterator_internal & other) const {
return this->ret_ptr >= other.ret_ptr;
}
inline daughter operator+(difference_type n) {
daughter tmp(static_cast<daughter &>(*this));
tmp += n;
return tmp;
}
inline daughter operator-(difference_type n) {
daughter tmp(static_cast<daughter &>(*this));
tmp -= n;
return tmp;
}
inline difference_type operator-(const iterator_internal & b) {
return (this->ret_ptr - b.ret_ptr) / _offset;
}
inline pointer_type data() const { return ret_ptr; }
inline difference_type offset() const { return _offset; }
protected:
UInt _offset{0};
pointer_type initial{nullptr};
std::unique_ptr<internal_value_type> ret{nullptr};
pointer_type ret_ptr{nullptr};
};
/* -------------------------------------------------------------------------- */
/**
* Specialization for scalar types
*/
template <class T, bool is_scal>
template <class R, class daughter, class IR>
class Array<T, is_scal>::iterator_internal<R, daughter, IR, false> {
public:
using value_type = R;
using pointer = R *;
using reference = R &;
using const_reference = const R &;
using internal_value_type = IR;
using internal_pointer = IR *;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
public:
iterator_internal(pointer data = nullptr) : ret(data), initial(data){};
iterator_internal(const iterator_internal & it) = default;
iterator_internal(iterator_internal && it) = default;
virtual ~iterator_internal() = default;
inline iterator_internal & operator=(const iterator_internal & it) = default;
UInt getCurrentIndex() { return (this->ret - this->initial); };
inline reference operator*() { return *ret; };
inline const_reference operator*() const { return *ret; };
inline pointer operator->() { return ret; };
inline daughter & operator++() {
++ret;
return static_cast<daughter &>(*this);
};
inline daughter & operator--() {
--ret;
return static_cast<daughter &>(*this);
};
inline daughter & operator+=(const UInt n) {
ret += n;
return static_cast<daughter &>(*this);
}
inline daughter & operator-=(const UInt n) {
ret -= n;
return static_cast<daughter &>(*this);
}
inline reference operator[](const UInt n) { return ret[n]; }
inline bool operator==(const iterator_internal & other) const {
return ret == other.ret;
}
inline bool operator!=(const iterator_internal & other) const {
return ret != other.ret;
}
inline bool operator<(const iterator_internal & other) const {
return ret < other.ret;
}
inline bool operator<=(const iterator_internal & other) const {
return ret <= other.ret;
}
inline bool operator>(const iterator_internal & other) const {
return ret > other.ret;
}
inline bool operator>=(const iterator_internal & other) const {
return ret >= other.ret;
}
inline daughter operator-(difference_type n) { return daughter(ret - n); }
inline daughter operator+(difference_type n) { return daughter(ret + n); }
inline difference_type operator-(const iterator_internal & b) {
return ret - b.ret;
}
inline pointer data() const { return ret; }
protected:
pointer ret{nullptr};
pointer initial{nullptr};
};
/* -------------------------------------------------------------------------- */
/* Begin/End functions implementation */
/* -------------------------------------------------------------------------- */
namespace detail {
template <class Tuple, size_t... Is>
constexpr auto take_front_impl(Tuple && t, std::index_sequence<Is...>) {
return std::make_tuple(std::get<Is>(std::forward<Tuple>(t))...);
}
template <size_t N, class Tuple> constexpr auto take_front(Tuple && t) {
return take_front_impl(std::forward<Tuple>(t),
std::make_index_sequence<N>{});
}
template <typename... V>
constexpr auto product_all(V &&... v) ->
typename std::common_type<V...>::type {
typename std::common_type<V...>::type result = 1;
(void)std::initializer_list<int>{(result *= v, 0)...};
return result;
}
template <typename... T> std::string to_string_all(T &&... t) {
if (sizeof...(T) == 0)
return "";
std::stringstream ss;
bool noComma = true;
ss << "(";
(void)std::initializer_list<bool>{
(ss << (noComma ? "" : ", ") << t, noComma = false)...};
ss << ")";
return ss.str();
}
template <std::size_t N> struct InstantiationHelper {
template <typename type, typename T, typename... Ns>
static auto instantiate(T && data, Ns... ns) {
return std::make_unique<type>(data, ns...);
}
};
template <> struct InstantiationHelper<0> {
template <typename type, typename T> static auto instantiate(T && data) {
return data;
}
};
template <typename Arr, typename T, typename... Ns>
decltype(auto) get_iterator(Arr && array, T * data, Ns &&... ns) {
using type = IteratorHelper_t<sizeof...(Ns) - 1, T>;
using array_type = std::decay_t<Arr>;
using iterator =
std::conditional_t<std::is_const<Arr>::value,
typename array_type::template const_iterator<type>,
typename array_type::template iterator<type>>;
if (array.getNbComponent() * array.size() !=
product_all(std::forward<Ns>(ns)...)) {
AKANTU_CUSTOM_EXCEPTION_INFO(
debug::ArrayException(),
"The iterator on Array "
<< to_string_all(array.size(), array.getNbComponent())
<< "is not compatible with the type "
<< debug::demangle(typeid(type).name()) << to_string_all(ns...));
}
auto && wrapped = aka::apply(
[&](auto... n) {
return InstantiationHelper<sizeof...(n)>::template instantiate<type>(
data, n...);
},
take_front<sizeof...(Ns) - 1>(std::make_tuple(ns...)));
return iterator(std::move(wrapped));
}
} // namespace detail
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin(Ns &&... ns) {
return detail::get_iterator(*this, values, std::forward<Ns>(ns)..., size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end(Ns &&... ns) {
return detail::get_iterator(*this, values + nb_component * size_,
std::forward<Ns>(ns)..., size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin(Ns &&... ns) const {
return detail::get_iterator(*this, values, std::forward<Ns>(ns)..., size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end(Ns &&... ns) const {
return detail::get_iterator(*this, values + nb_component * size_,
std::forward<Ns>(ns)..., size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin_reinterpret(Ns &&... ns) {
return detail::get_iterator(*this, values, std::forward<Ns>(ns)...);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end_reinterpret(Ns &&... ns) {
return detail::get_iterator(
*this, values + detail::product_all(std::forward<Ns>(ns)...),
std::forward<Ns>(ns)...);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin_reinterpret(Ns &&... ns) const {
return detail::get_iterator(*this, values, std::forward<Ns>(ns)...);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end_reinterpret(Ns &&... ns) const {
return detail::get_iterator(
*this, values + detail::product_all(std::forward<Ns>(ns)...),
std::forward<Ns>(ns)...);
}
/* -------------------------------------------------------------------------- */
/* Views */
/* -------------------------------------------------------------------------- */
namespace detail {
template <typename Array, typename... Ns> class ArrayView {
using tuple = std::tuple<Ns...>;
public:
ArrayView(Array && array, Ns &&... ns)
: array(std::forward<Array>(array)),
sizes(std::forward<Ns>(ns)...){};
decltype(auto) begin() {
return aka::apply(
[&](auto &&... ns) { return array.begin_reinterpret(ns...); }, sizes);
}
decltype(auto) end() {
return aka::apply(
[&](auto &&... ns) { return array.end_reinterpret(ns...); }, sizes);
}
decltype(auto) size() {
return std::get<std::tuple_size<tuple>::value - 1>(sizes);
}
private:
Array array;
tuple sizes;
};
} // namespace detail
/* -------------------------------------------------------------------------- */
template <typename Array, typename... Ns>
decltype(auto) make_view(Array && array, Ns &&... ns) {
auto size = std::forward<decltype(array)>(array).size() *
std::forward<decltype(array)>(array).getNbComponent() /
detail::product_all(ns...);
return detail::ArrayView<Array, Ns..., decltype(size)>(
std::forward<Array>(array), std::forward<Ns>(ns)...,
std::forward<decltype(size)>(size));
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <typename R>
class Array<T, is_scal>::const_iterator
: public iterator_internal<const R, Array<T, is_scal>::const_iterator<R>,
R> {
public:
typedef iterator_internal<const R, const_iterator, R> parent;
using value_type = typename parent::value_type;
using pointer = typename parent::pointer;
using reference = typename parent::reference;
using difference_type = typename parent::difference_type;
using iterator_category = typename parent::iterator_category;
public:
const_iterator() : parent(){};
// const_iterator(pointer_type data, UInt offset) : parent(data, offset) {}
// const_iterator(pointer warped) : parent(warped) {}
// const_iterator(const parent & it) : parent(it) {}
const_iterator(const const_iterator & it) = default;
const_iterator(const_iterator && it) = default;
template <typename P, typename = std::enable_if_t<not is_tensor<P>{}>>
const_iterator(P * data) : parent(data) {}
template <typename UP_P, typename = std::enable_if_t<
is_tensor<typename UP_P::element_type>::value>>
const_iterator(UP_P && tensor) : parent(std::forward<UP_P>(tensor)) {}
const_iterator & operator=(const const_iterator & it) = default;
};
template <class T, class R, bool is_tensor_ = is_tensor<R>{}>
struct ConstConverterIteratorHelper {
using const_iterator = typename Array<T>::template const_iterator<R>;
using iterator = typename Array<T>::template iterator<R>;
static inline const_iterator convert(const iterator & it) {
return const_iterator(std::unique_ptr<R>(new R(*it, false)));
}
};
template <class T, class R> struct ConstConverterIteratorHelper<T, R, false> {
using const_iterator = typename Array<T>::template const_iterator<R>;
using iterator = typename Array<T>::template iterator<R>;
static inline const_iterator convert(const iterator & it) {
return const_iterator(it.data());
}
};
template <class T, bool is_scal>
template <typename R>
class Array<T, is_scal>::iterator
: public iterator_internal<R, Array<T, is_scal>::iterator<R>> {
public:
using parent = iterator_internal<R, iterator>;
using value_type = typename parent::value_type;
using pointer = typename parent::pointer;
using reference = typename parent::reference;
using difference_type = typename parent::difference_type;
using iterator_category = typename parent::iterator_category;
public:
iterator() : parent(){};
iterator(const iterator & it) = default;
iterator(iterator && it) = default;
template <typename P, typename = std::enable_if_t<not is_tensor<P>::value>>
iterator(P * data) : parent(data) {}
template <typename UP_P, typename = std::enable_if_t<
is_tensor<typename UP_P::element_type>::value>>
iterator(UP_P && tensor) : parent(std::forward<UP_P>(tensor)) {}
iterator & operator=(const iterator & it) = default;
operator const_iterator<R>() {
return ConstConverterIteratorHelper<T, R>::convert(*this);
}
};
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <typename R>
inline typename Array<T, is_scal>::template iterator<R>
Array<T, is_scal>::erase(const iterator<R> & it) {
T * curr = it.data();
UInt pos = (curr - values) / nb_component;
erase(pos);
iterator<R> rit = it;
return --rit;
}
#endif
} // namespace akantu
#endif /* __AKANTU_AKA_ARRAY_TMPL_HH__ */

Event Timeline