Page MenuHomec4science

fe_engine.hh
No OneTemporary

File Metadata

Created
Sun, May 5, 20:58

fe_engine.hh

/**
* @file fe_engine.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Tue Jul 20 2010
* @date last modification: Mon Jul 07 2014
*
* @brief FEM class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_FE_ENGINE_HH__
#define __AKANTU_FE_ENGINE_HH__
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "aka_memory.hh"
#include "mesh.hh"
#include "element_class.hh"
#include "sparse_matrix.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
class Integrator;
class ShapeFunctions;
}
__BEGIN_AKANTU__
class QuadraturePoint : public Element {
public:
typedef Vector<Real> position_type;
public:
QuadraturePoint(ElementType type = _not_defined, UInt element = 0,
UInt num_point = 0, GhostType ghost_type = _not_ghost) :
Element(type, element, ghost_type), num_point(num_point), global_num(0),
position((Real *)NULL, 0) { };
QuadraturePoint(UInt element, UInt num_point,
UInt global_num,
const position_type & position,
ElementType type,
GhostType ghost_type = _not_ghost) :
Element(type, element, ghost_type), num_point(num_point), global_num(global_num),
position((Real *)NULL, 0) { this->position.shallowCopy(position); };
QuadraturePoint(const QuadraturePoint & quad) :
Element(quad), num_point(quad.num_point), global_num(quad.global_num), position((Real *) NULL, 0) {
position.shallowCopy(quad.position);
};
inline QuadraturePoint & operator=(const QuadraturePoint & q) {
if(this != &q) {
element = q.element;
type = q.type;
ghost_type = q.ghost_type;
num_point = q.num_point;
global_num = q.global_num;
position.shallowCopy(q.position);
}
return *this;
}
AKANTU_GET_MACRO(Position, position, const position_type &);
void setPosition(const position_type & position) {
this->position.shallowCopy(position);
}
/// function to print the containt of the class
virtual void printself(std::ostream & stream, int indent = 0) const {
std::string space;
for(Int i = 0; i < indent; i++, space += AKANTU_INDENT);
stream << space << "QuadraturePoint [";
Element::printself(stream, 0);
stream << ", " << num_point << "]";
}
public:
UInt num_point;
UInt global_num;
private:
position_type position;
};
/**
* The generic FEEngine class derived in a FEEngineTemplate class containing the
* shape functions and the integration method
*/
class FEEngine : protected Memory {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
FEEngine(Mesh & mesh, UInt spatial_dimension = _all_dimensions,
ID id = "fem", MemoryID memory_id = 0);
virtual ~FEEngine();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// build the profile of the sparse matrix corresponding to the mesh
void initSparseMatrixProfile(SparseMatrixType sparse_matrix_type = _unsymmetric);
/// pre-compute all the shape functions, their derivatives and the jacobians
virtual void initShapeFunctions(const GhostType & ghost_type = _not_ghost) = 0;
/// extract the nodal values and store them per element
template<typename T>
static void extractNodalToElementField(const Mesh & mesh,
const Array<T> & nodal_f,
Array<T> & elemental_f,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter);
/// filter a field
template<typename T>
static void filterElementalData(const Mesh & mesh,
const Array<T> & quad_f,
Array<T> & filtered_f,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter);
/* ------------------------------------------------------------------------ */
/* Integration method bridges */
/* ------------------------------------------------------------------------ */
/// integrate f for all elements of type "type"
virtual void integrate(const Array<Real> & f,
Array<Real> &intf,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// integrate a scalar value on all elements of type "type"
virtual Real integrate(const Array<Real> & f,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// integrate f for all quadrature points of type "type" but don't sum over all quadrature points
virtual void integrateOnQuadraturePoints(const Array<Real> & f,
Array<Real> &intf,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// integrate one element scalar value on all elements of type "type"
virtual Real integrate(const Vector<Real> & f,
const ElementType & type,
UInt index, const GhostType & ghost_type = _not_ghost) const = 0;
/* ------------------------------------------------------------------------ */
/* compatibility with old FEEngine fashion */
/* ------------------------------------------------------------------------ */
/// get the number of quadrature points
virtual UInt getNbQuadraturePoints(const ElementType & type,
const GhostType & ghost_type = _not_ghost) const = 0;
/// get the precomputed shapes
const virtual Array<Real> & getShapes(const ElementType & type,
const GhostType & ghost_type = _not_ghost,
UInt id = 0) const = 0;
/// get the derivatives of shapes
const virtual Array<Real> & getShapesDerivatives(const ElementType & type,
const GhostType & ghost_type = _not_ghost,
UInt id = 0) const = 0;
/// get quadrature points
const virtual Matrix<Real> & getQuadraturePoints(const ElementType & type,
const GhostType & ghost_type = _not_ghost) const = 0;
/* ------------------------------------------------------------------------ */
/* Shape method bridges */
/* ------------------------------------------------------------------------ */
virtual
void gradientOnQuadraturePoints(const Array<Real> &u,
Array<Real> &nablauq,
const UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
virtual
void interpolateOnQuadraturePoints(const Array<Real> &u,
Array<Real> &uq,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
virtual
void interpolateOnQuadraturePoints(const Array<Real> & u,
ElementTypeMapArray<Real> & uq,
const ElementTypeMapArray<UInt> * filter_elements = NULL) const = 0;
/* ------------------------------------------------------------------------ */
/* Other methods */
/* ------------------------------------------------------------------------ */
/// pre-compute normals on control points
virtual void computeNormalsOnControlPoints(const GhostType & ghost_type = _not_ghost) = 0;
/// pre-compute normals on control points
virtual void computeNormalsOnControlPoints(__attribute__((unused)) const Array<Real> & field,
__attribute__((unused)) const GhostType & ghost_type = _not_ghost) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// pre-compute normals on control points
virtual void computeNormalsOnControlPoints(__attribute__((unused)) const Array<Real> & field,
__attribute__((unused)) Array<Real> & normal,
__attribute__((unused)) const ElementType & type,
__attribute__((unused)) const GhostType & ghost_type = _not_ghost) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// assemble vectors
void assembleArray(const Array<Real> & elementary_vect,
Array<Real> & nodal_values,
const Array<Int> & equation_number,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter,
Real scale_factor = 1) const;
/// assemble matrix in the complete sparse matrix
void assembleMatrix(const Array<Real> & elementary_mat,
SparseMatrix & matrix,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// assemble a field as a lumped matrix (ex. rho in lumped mass)
virtual void assembleFieldLumped(__attribute__ ((unused)) const Array<Real> & field_1,
__attribute__ ((unused)) UInt nb_degree_of_freedom,
__attribute__ ((unused)) Array<Real> & lumped,
__attribute__ ((unused)) const Array<Int> & equation_number,
__attribute__ ((unused)) ElementType type,
__attribute__ ((unused)) const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
};
/// assemble a field as a matrix (ex. rho to mass matrix)
virtual void assembleFieldMatrix(__attribute__ ((unused)) const Array<Real> & field_1,
__attribute__ ((unused)) UInt nb_degree_of_freedom,
__attribute__ ((unused)) SparseMatrix & matrix,
__attribute__ ((unused)) ElementType type,
__attribute__ ((unused)) const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
#ifdef AKANTU_STRUCTURAL_MECHANICS
virtual void assembleFieldMatrix(__attribute__ ((unused)) const Array<Real> & field_1,
__attribute__ ((unused)) UInt nb_degree_of_freedom,
__attribute__ ((unused)) SparseMatrix & M,
__attribute__ ((unused)) Array<Real> * n,
__attribute__ ((unused)) ElementTypeMapArray<Real> & rotation_mat,
__attribute__ ((unused)) ElementType type,
__attribute__ ((unused)) const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
virtual void computeShapesMatrix(__attribute__ ((unused))const ElementType & type,
__attribute__ ((unused))UInt nb_degree_of_freedom,
__attribute__ ((unused))UInt nb_nodes_per_element,
__attribute__ ((unused))Array<Real> * n,
__attribute__ ((unused))UInt id,
__attribute__ ((unused))UInt degree_to_interpolate,
__attribute__ ((unused))UInt degree_interpolated,
__attribute__ ((unused))const bool sign,
__attribute__ ((unused))const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
#endif
/// function to print the containt of the class
virtual void printself(std::ostream & stream, int indent = 0) const;
private:
/// initialise the class
void init();
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get the dimension of the element handeled by this fe_engine object
AKANTU_GET_MACRO(ElementDimension, element_dimension, UInt);
/// get the mesh contained in the fem object
AKANTU_GET_MACRO(Mesh, mesh, const Mesh &);
/// get the mesh contained in the fem object
AKANTU_GET_MACRO_NOT_CONST(Mesh, mesh, Mesh &);
/// get the in-radius of an element
static inline Real getElementInradius(const Matrix<Real> & coord, const ElementType & type);
/// get the normals on quadrature points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(NormalsOnQuadPoints, normals_on_quad_points, Real);
/// get cohesive element type for a given facet type
static inline ElementType getCohesiveElementType(const ElementType & type_facet);
/// get the interpolation element associated to an element type
static inline InterpolationType getInterpolationType(const ElementType & el_type);
virtual const ShapeFunctions & getShapeFunctionsInterface() const = 0;
virtual const Integrator & getIntegratorInterface() const = 0;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// spatial dimension of the problem
UInt element_dimension;
/// the mesh on which all computation are made
Mesh & mesh;
/// normals at quadrature points
ElementTypeMapArray<Real> normals_on_quad_points;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
/// standard output stream operator
inline std::ostream & operator <<(std::ostream & stream, const FEEngine & _this)
{
_this.printself(stream);
return stream;
}
/// standard output stream operator
inline std::ostream & operator <<(std::ostream & stream, const QuadraturePoint & _this)
{
_this.printself(stream);
return stream;
}
__END_AKANTU__
#include "fe_engine_inline_impl.cc"
#include "fe_engine_template.hh"
#endif /* __AKANTU_FE_ENGINE_HH__ */

Event Timeline