Page MenuHomec4science

fe_engine_template.hh
No OneTemporary

File Metadata

Created
Tue, May 28, 06:09

fe_engine_template.hh

/**
* @file fe_engine_template.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Tue Dec 08 2015
*
* @brief templated class that calls integration and shape objects
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __AKANTU_FE_ENGINE_TEMPLATE_HH__
#define __AKANTU_FE_ENGINE_TEMPLATE_HH__
/* -------------------------------------------------------------------------- */
#include "fe_engine.hh"
#include "integrator.hh"
#include "shape_functions.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
class DOFManager;
}
__BEGIN_AKANTU__
template <ElementKind k> struct AssembleLumpedTemplateHelper;
template <ElementKind k> struct AssembleFieldMatrixHelper;
/* -------------------------------------------------------------------------- */
template <template <ElementKind> class I, template <ElementKind> class S,
ElementKind kind = _ek_regular>
class FEEngineTemplate : public FEEngine {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
typedef I<kind> Integ;
typedef S<kind> Shape;
FEEngineTemplate(Mesh & mesh, UInt spatial_dimension = _all_dimensions,
ID id = "fem", MemoryID memory_id = 0);
virtual ~FEEngineTemplate();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// pre-compute all the shape functions, their derivatives and the jacobians
void initShapeFunctions(const GhostType & ghost_type = _not_ghost);
void initShapeFunctions(const Array<Real> & nodes,
const GhostType & ghost_type = _not_ghost);
/* ------------------------------------------------------------------------ */
/* Integration method bridges */
/* ------------------------------------------------------------------------ */
/// integrate f for all elements of type "type"
void integrate(const Array<Real> & f, Array<Real> & intf,
UInt nb_degree_of_freedom, const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// integrate a scalar value on all elements of type "type"
Real integrate(const Array<Real> & f, const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// integrate one element scalar value on all elements of type "type"
virtual Real integrate(const Vector<Real> & f, const ElementType & type,
UInt index,
const GhostType & ghost_type = _not_ghost) const;
/// integrate partially around an integration point (@f$ intf_q = f_q * J_q *
/// w_q @f$)
void integrateOnIntegrationPoints(
const Array<Real> & f, Array<Real> & intf, UInt nb_degree_of_freedom,
const ElementType & type, const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// interpolate on a phyiscal point inside an element
void interpolate(const Vector<Real> & real_coords,
const Matrix<Real> & nodal_values,
Vector<Real> & interpolated, const Element & element) const;
/// get the number of integration points
UInt getNbIntegrationPoints(const ElementType & type,
const GhostType & ghost_type = _not_ghost) const;
/// get shapes precomputed
const Array<Real> & getShapes(const ElementType & type,
const GhostType & ghost_type = _not_ghost,
UInt id = 0) const;
/// get the derivatives of shapes
const Array<Real> &
getShapesDerivatives(const ElementType & type,
const GhostType & ghost_type = _not_ghost,
UInt id = 0) const;
/// get integration points
const inline Matrix<Real> &
getIntegrationPoints(const ElementType & type,
const GhostType & ghost_type = _not_ghost) const;
/* ------------------------------------------------------------------------ */
/* Shape method bridges */
/* ------------------------------------------------------------------------ */
/// compute the gradient of a nodal field on the integration points
void gradientOnIntegrationPoints(
const Array<Real> & u, Array<Real> & nablauq,
const UInt nb_degree_of_freedom, const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// interpolate a nodal field on the integration points
void interpolateOnIntegrationPoints(
const Array<Real> & u, Array<Real> & uq, UInt nb_degree_of_freedom,
const ElementType & type, const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// interpolate a nodal field on the integration points given a
/// by_element_type
void interpolateOnIntegrationPoints(
const Array<Real> & u, ElementTypeMapArray<Real> & uq,
const ElementTypeMapArray<UInt> * filter_elements = NULL) const;
/// compute the position of integration points given by an element_type_map
/// from nodes position
inline void computeIntegrationPointsCoordinates(
ElementTypeMapArray<Real> & quadrature_points_coordinates,
const ElementTypeMapArray<UInt> * filter_elements = NULL) const;
/// compute the position of integration points from nodes position
inline void computeIntegrationPointsCoordinates(
Array<Real> & quadrature_points_coordinates, const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const;
/// interpolate field at given position (interpolation_points) from given
/// values of this field at integration points (field)
inline void interpolateElementalFieldFromIntegrationPoints(
const ElementTypeMapArray<Real> & field,
const ElementTypeMapArray<Real> & interpolation_points_coordinates,
ElementTypeMapArray<Real> & result, const GhostType ghost_type,
const ElementTypeMapArray<UInt> * element_filter) const;
/// Interpolate field at given position from given values of this field at
/// integration points (field)
/// using matrices precomputed with
/// initElementalFieldInterplationFromIntegrationPoints
inline void interpolateElementalFieldFromIntegrationPoints(
const ElementTypeMapArray<Real> & field,
const ElementTypeMapArray<Real> &
interpolation_points_coordinates_matrices,
const ElementTypeMapArray<Real> & quad_points_coordinates_inv_matrices,
ElementTypeMapArray<Real> & result, const GhostType ghost_type,
const ElementTypeMapArray<UInt> * element_filter) const;
/// Build pre-computed matrices for interpolation of field form integration
/// points at other given positions (interpolation_points)
inline void initElementalFieldInterpolationFromIntegrationPoints(
const ElementTypeMapArray<Real> & interpolation_points_coordinates,
ElementTypeMapArray<Real> & interpolation_points_coordinates_matrices,
ElementTypeMapArray<Real> & quad_points_coordinates_inv_matrices,
const ElementTypeMapArray<UInt> * element_filter = NULL) const;
/// find natural coords from real coords provided an element
void inverseMap(const Vector<Real> & real_coords, UInt element,
const ElementType & type, Vector<Real> & natural_coords,
const GhostType & ghost_type = _not_ghost) const;
/// return true if the coordinates provided are inside the element, false
/// otherwise
inline bool contains(const Vector<Real> & real_coords, UInt element,
const ElementType & type,
const GhostType & ghost_type = _not_ghost) const;
/// compute the shape on a provided point
inline void computeShapes(const Vector<Real> & real_coords, UInt element,
const ElementType & type, Vector<Real> & shapes,
const GhostType & ghost_type = _not_ghost) const;
/// compute the shape derivatives on a provided point
inline void
computeShapeDerivatives(const Vector<Real> & real__coords, UInt element,
const ElementType & type,
Matrix<Real> & shape_derivatives,
const GhostType & ghost_type = _not_ghost) const;
/* ------------------------------------------------------------------------ */
/* Other methods */
/* ------------------------------------------------------------------------ */
/// pre-compute normals on integration points
void
computeNormalsOnIntegrationPoints(const GhostType & ghost_type = _not_ghost);
void
computeNormalsOnIntegrationPoints(const Array<Real> & field,
const GhostType & ghost_type = _not_ghost);
void computeNormalsOnIntegrationPoints(
const Array<Real> & field, Array<Real> & normal, const ElementType & type,
const GhostType & ghost_type = _not_ghost) const;
template <ElementType type>
void computeNormalsOnIntegrationPoints(const Array<Real> & field,
Array<Real> & normal,
const GhostType & ghost_type) const;
/// function to print the contain of the class
virtual void printself(std::ostream & stream, int indent = 0) const;
/// assemble a field as a lumped matrix (ex. rho in lumped mass)
void assembleFieldLumped(const Array<Real> & field, const ID & lumped,
const ID & dof_id, DOFManager & dof_manager,
ElementType type,
const GhostType & ghost_type = _not_ghost) const;
/// assemble a field as a matrix (ex. rho to mass matrix)
template <class Functor>
void assembleFieldMatrix(Functor field_funct, const ID & matrix_id,
const ID & dof_id, DOFManager & dof_manager,
ElementType type,
const GhostType & ghost_type) const;
#ifdef AKANTU_STRUCTURAL_MECHANICS
/// assemble a field as a matrix (ex. rho to mass matrix)
void assembleFieldMatrix(const Array<Real> & field_1,
UInt nb_degree_of_freedom, SparseMatrix & M,
Array<Real> * n,
ElementTypeMapArray<Real> & rotation_mat,
const ElementType & type,
const GhostType & ghost_type = _not_ghost) const;
/// compute shapes function in a matrix for structural elements
void computeShapesMatrix(__attribute__((unused)) const ElementType & type,
__attribute__((unused)) UInt nb_degree_of_freedom,
__attribute__((unused)) UInt nb_nodes_per_element,
__attribute__((unused)) Array<Real> * n,
__attribute__((unused)) UInt id,
__attribute__((unused)) UInt degree_to_interpolate,
__attribute__((unused)) UInt degree_interpolated,
__attribute__((unused)) const bool sign,
__attribute__((unused))
const GhostType & ghost_type = _not_ghost) const;
#endif
private:
friend struct AssembleLumpedTemplateHelper<kind>;
friend struct AssembleFieldMatrixHelper<kind>;
/// templated function to compute the scaling to assemble a lumped matrix
template <ElementType type>
void assembleLumpedTemplate(const Array<Real> & field, const ID & lumped,
const ID & dof_id, DOFManager & dof_manager,
const GhostType & ghost_type) const;
/// @f$ \tilde{M}_{i} = \sum_j M_{ij} = \sum_j \int \rho \varphi_i \varphi_j
/// dV = \int \rho \varphi_i dV @f$
template <ElementType type>
void assembleLumpedRowSum(const Array<Real> & field, const ID & lumped,
const ID & dof_id, DOFManager & dof_manager,
const GhostType & ghost_type) const;
/// @f$ \tilde{M}_{i} = c * M_{ii} = \int_{V_e} \rho dV @f$
template <ElementType type>
void assembleLumpedDiagonalScaling(const Array<Real> & field,
const ID & lumped, const ID & dof_id,
DOFManager & dof_manager,
const GhostType & ghost_type) const;
/// assemble a field as a matrix (ex. rho to mass matrix)
template <class Functor, ElementType type>
void assembleFieldMatrix(Functor field_funct, const ID & matrix_id,
const ID & dof_id, DOFManager & dof_manager,
const GhostType & ghost_type) const;
#ifdef AKANTU_STRUCTURAL_MECHANICS
/// assemble a field as a matrix for structural elements (ex. rho to mass
/// matrix)
template <ElementType type>
void assembleFieldMatrix(const Array<Real> & field_1,
UInt nb_degree_of_freedom, SparseMatrix & M,
Array<Real> * n,
ElementTypeMapArray<Real> & rotation_mat,
__attribute__((unused))
const GhostType & ghost_type) const;
#endif
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get the shape class (probably useless: see getShapeFunction)
const ShapeFunctions & getShapeFunctionsInterface() const {
return shape_functions;
};
/// get the shape class
const Shape & getShapeFunctions() const { return shape_functions; };
/// get the integrator class (probably useless: see getIntegrator)
const Integrator & getIntegratorInterface() const { return integrator; };
/// get the integrator class
const Integ & getIntegrator() const { return integrator; };
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private:
Integ integrator;
Shape shape_functions;
};
__END_AKANTU__
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
#include "fe_engine_template_tmpl.hh"
/* -------------------------------------------------------------------------- */
/* Shape Linked specialization */
/* -------------------------------------------------------------------------- */
#if defined(AKANTU_STRUCTURAL_MECHANICS)
#include "fe_engine_template_tmpl_struct.hh"
#endif
/* -------------------------------------------------------------------------- */
/* Shape IGFEM specialization */
/* -------------------------------------------------------------------------- */
#if defined(AKANTU_IGFEM)
#include "fe_engine_template_tmpl_igfem.hh"
#endif
#endif /* __AKANTU_FE_ENGINE_TEMPLATE_HH__ */

Event Timeline