Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90370330
shape_structural_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 01:10
Size
18 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 01:10 (2 d)
Engine
blob
Format
Raw Data
Handle
21608887
Attached To
rAKA akantu
shape_structural_inline_impl.hh
View Options
/**
* @file shape_structural_inline_impl.hh
*
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Wed Oct 11 2017
* @date last modification: Wed Feb 21 2018
*
* @brief ShapeStructural inline implementation
*
*
* Copyright (©) 2016-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "mesh_iterators.hh"
#include "shape_structural.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SHAPE_STRUCTURAL_INLINE_IMPL_HH_
#define AKANTU_SHAPE_STRUCTURAL_INLINE_IMPL_HH_
namespace
akantu
{
namespace
{
/// Extract nodal coordinates per elements
template
<
ElementType
type
>
std
::
unique_ptr
<
Array
<
Real
>>
getNodesPerElement
(
const
Mesh
&
mesh
,
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
const
auto
dim
=
ElementClass
<
type
>::
getSpatialDimension
();
const
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nodes_per_element
=
std
::
make_unique
<
Array
<
Real
>>
(
0
,
dim
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
*
nodes_per_element
,
type
,
ghost_type
);
return
nodes_per_element
;
}
}
// namespace
template
<
ElementKind
kind
>
inline
void
ShapeStructural
<
kind
>::
initShapeFunctions
(
const
Array
<
Real
>
&
/* unused */
,
const
Matrix
<
Real
>
&
/* unused */
,
ElementType
/* unused */
,
GhostType
/* unused */
)
{
AKANTU_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
#define INIT_SHAPE_FUNCTIONS(type) \
setIntegrationPointsByType<type>(integration_points, ghost_type); \
precomputeRotationMatrices<type>(nodes, ghost_type); \
precomputeShapesOnIntegrationPoints<type>(nodes, ghost_type); \
precomputeShapeDerivativesOnIntegrationPoints<type>(nodes, ghost_type);
template
<>
inline
void
ShapeStructural
<
_ek_structural
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
ElementType
type
,
GhostType
ghost_type
)
{
AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
#undef INIT_SHAPE_FUNCTIONS
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
computeShapesOnIntegrationPointsInternal
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
Array
<
Real
>
&
shapes
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
,
bool
mass
)
const
{
auto
nb_points
=
integration_points
.
cols
();
auto
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
size
();
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
shapes
.
resize
(
nb_element
*
nb_points
);
auto
nb_dofs
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
auto
nb_rows
=
nb_dofs
;
if
(
mass
)
{
nb_rows
=
ElementClass
<
type
>::
getNbStressComponents
();
}
#if !defined(AKANTU_NDEBUG)
UInt
size_of_shapes
=
nb_rows
*
nb_dofs
*
nb_nodes_per_element
;
AKANTU_DEBUG_ASSERT
(
shapes
.
getNbComponent
()
==
size_of_shapes
,
"The shapes array does not have the correct "
<<
"number of component"
);
#endif
auto
shapes_it
=
shapes
.
begin_reinterpret
(
nb_rows
,
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
()
*
nb_dofs
,
nb_points
,
nb_element
);
auto
shapes_begin
=
shapes_it
;
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
auto
nodes_per_element
=
getNodesPerElement
<
type
>
(
mesh
,
nodes
,
ghost_type
);
auto
nodes_it
=
nodes_per_element
->
begin
(
mesh
.
getSpatialDimension
(),
Mesh
::
getNbNodesPerElement
(
type
));
auto
nodes_begin
=
nodes_it
;
auto
rot_matrix_it
=
make_view
(
rotation_matrices
(
type
,
ghost_type
),
nb_dofs
,
nb_dofs
).
begin
();
auto
rot_matrix_begin
=
rot_matrix_it
;
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
)
{
if
(
filter_elements
!=
empty_filter
)
{
shapes_it
=
shapes_begin
+
filter_elements
(
elem
);
nodes_it
=
nodes_begin
+
filter_elements
(
elem
);
rot_matrix_it
=
rot_matrix_begin
+
filter_elements
(
elem
);
}
Tensor3
<
Real
>
&
N
=
*
shapes_it
;
auto
&
real_coord
=
*
nodes_it
;
auto
&
RDOFs
=
*
rot_matrix_it
;
Matrix
<
Real
>
T
(
N
.
size
(
1
),
N
.
size
(
1
),
0
);
for
(
UInt
i
=
0
;
i
<
nb_nodes_per_element
;
++
i
)
{
T
.
block
(
RDOFs
,
i
*
RDOFs
.
rows
(),
i
*
RDOFs
.
rows
());
}
if
(
not
mass
)
{
ElementClass
<
type
>::
computeShapes
(
integration_points
,
real_coord
,
T
,
N
);
}
else
{
ElementClass
<
type
>::
computeShapesMass
(
integration_points
,
real_coord
,
T
,
N
);
}
if
(
filter_elements
==
empty_filter
)
{
++
shapes_it
;
++
nodes_it
;
}
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
precomputeRotationMatrices
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
const
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
const
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
const
auto
nb_dof
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
if
(
not
this
->
rotation_matrices
.
exists
(
type
,
ghost_type
))
{
this
->
rotation_matrices
.
alloc
(
0
,
nb_dof
*
nb_dof
,
type
,
ghost_type
);
}
auto
&
rot_matrices
=
this
->
rotation_matrices
(
type
,
ghost_type
);
rot_matrices
.
resize
(
nb_element
);
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
bool
has_extra_normal
=
mesh
.
hasData
<
Real
>
(
"extra_normal"
,
type
,
ghost_type
);
Array
<
Real
>::
const_vector_iterator
extra_normal
;
if
(
has_extra_normal
)
{
extra_normal
=
mesh
.
getData
<
Real
>
(
"extra_normal"
,
type
,
ghost_type
)
.
begin
(
spatial_dimension
);
}
for
(
auto
&&
tuple
:
zip
(
make_view
(
x_el
,
spatial_dimension
,
nb_nodes_per_element
),
make_view
(
rot_matrices
,
nb_dof
,
nb_dof
)))
{
// compute shape derivatives
auto
&
X
=
std
::
get
<
0
>
(
tuple
);
auto
&
R
=
std
::
get
<
1
>
(
tuple
);
if
(
has_extra_normal
)
{
ElementClass
<
type
>::
computeRotationMatrix
(
R
,
X
,
*
extra_normal
);
++
extra_normal
;
}
else
{
ElementClass
<
type
>::
computeRotationMatrix
(
R
,
X
,
Vector
<
Real
>
(
spatial_dimension
));
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
auto
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_points
=
integration_points
(
type
,
ghost_type
).
cols
();
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
nb_dof
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
const
auto
dim
=
ElementClass
<
type
>::
getSpatialDimension
();
const
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
const
auto
natural_spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
if
(
not
shapes
.
exists
(
itp_type
,
ghost_type
))
{
auto
size_of_shapes
=
this
->
getShapeSize
(
type
);
this
->
shapes
.
alloc
(
0
,
size_of_shapes
,
itp_type
,
ghost_type
);
}
auto
&
rot_matrices
=
this
->
rotation_matrices
(
type
,
ghost_type
);
auto
&
shapes_
=
this
->
shapes
(
itp_type
,
ghost_type
);
shapes_
.
resize
(
nb_element
*
nb_points
);
auto
nodes_per_element
=
getNodesPerElement
<
type
>
(
mesh
,
nodes
,
ghost_type
);
for
(
auto
&&
tuple
:
zip
(
make_view
(
shapes_
,
nb_dof
,
nb_dof
*
nb_nodes_per_element
,
nb_points
),
make_view
(
*
nodes_per_element
,
dim
,
nb_nodes_per_element
),
make_view
(
rot_matrices
,
nb_dof
,
nb_dof
)))
{
auto
&
N
=
std
::
get
<
0
>
(
tuple
);
auto
&
X
=
std
::
get
<
1
>
(
tuple
);
auto
&
RDOFs
=
std
::
get
<
2
>
(
tuple
);
Matrix
<
Real
>
T
(
N
.
size
(
1
),
N
.
size
(
1
),
0
);
for
(
UInt
i
=
0
;
i
<
nb_nodes_per_element
;
++
i
)
{
T
.
block
(
RDOFs
,
i
*
RDOFs
.
rows
(),
i
*
RDOFs
.
rows
());
}
auto
R
=
RDOFs
.
block
(
0
,
0
,
spatial_dimension
,
spatial_dimension
);
// Rotate to local basis
auto
x
=
(
R
*
X
).
block
(
0
,
0
,
natural_spatial_dimension
,
nb_nodes_per_element
);
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
x
,
T
,
N
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
auto
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
const
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
const
auto
natural_spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
const
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
const
auto
nb_points
=
natural_coords
.
cols
();
const
auto
nb_dof
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
const
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
const
auto
nb_stress_components
=
ElementClass
<
type
>::
getNbStressComponents
();
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
if
(
not
this
->
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
))
{
auto
size_of_shapesd
=
this
->
getShapeDerivativesSize
(
type
);
this
->
shapes_derivatives
.
alloc
(
0
,
size_of_shapesd
,
itp_type
,
ghost_type
);
}
auto
&
rot_matrices
=
this
->
rotation_matrices
(
type
,
ghost_type
);
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
auto
&
shapesd
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
shapesd
.
resize
(
nb_element
*
nb_points
);
for
(
auto
&&
tuple
:
zip
(
make_view
(
x_el
,
spatial_dimension
,
nb_nodes_per_element
),
make_view
(
shapesd
,
nb_stress_components
,
nb_nodes_per_element
*
nb_dof
,
nb_points
),
make_view
(
rot_matrices
,
nb_dof
,
nb_dof
)))
{
// compute shape derivatives
auto
&
X
=
std
::
get
<
0
>
(
tuple
);
auto
&
B
=
std
::
get
<
1
>
(
tuple
);
auto
&
RDOFs
=
std
::
get
<
2
>
(
tuple
);
Tensor3
<
Real
>
dnds
(
natural_spatial_dimension
,
ElementClass
<
type
>::
interpolation_property
::
dnds_columns
,
B
.
size
(
2
));
ElementClass
<
type
>::
computeDNDS
(
natural_coords
,
X
,
dnds
);
Tensor3
<
Real
>
J
(
natural_spatial_dimension
,
natural_spatial_dimension
,
natural_coords
.
cols
());
// Computing the coordinates of the element in the natural space
auto
R
=
RDOFs
.
block
(
0
,
0
,
spatial_dimension
,
spatial_dimension
);
Matrix
<
Real
>
T
(
B
.
size
(
1
),
B
.
size
(
1
),
0
);
for
(
UInt
i
=
0
;
i
<
nb_nodes_per_element
;
++
i
)
{
T
.
block
(
RDOFs
,
i
*
RDOFs
.
rows
(),
i
*
RDOFs
.
rows
());
}
// Rotate to local basis
auto
x
=
(
R
*
X
).
block
(
0
,
0
,
natural_spatial_dimension
,
nb_nodes_per_element
);
ElementClass
<
type
>::
computeJMat
(
natural_coords
,
x
,
J
);
ElementClass
<
type
>::
computeShapeDerivatives
(
J
,
dnds
,
T
,
B
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_dof
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
out_uq
.
getNbComponent
()
==
nb_dof
,
"The output array shape is not correct"
);
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
const
auto
&
shapes_
=
shapes
(
itp_type
,
ghost_type
);
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
auto
nb_quad_points_per_element
=
integration_points
(
type
,
ghost_type
).
cols
();
Array
<
Real
>
u_el
(
0
,
nb_nodes_per_element
*
nb_dof
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
auto
nb_quad_points
=
nb_quad_points_per_element
*
u_el
.
size
();
out_uq
.
resize
(
nb_quad_points
);
auto
out_it
=
out_uq
.
begin_reinterpret
(
nb_dof
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
auto
shapes_it
=
shapes_
.
begin_reinterpret
(
nb_dof
,
nb_dof
*
nb_nodes_per_element
,
nb_quad_points_per_element
,
nb_element
);
auto
u_it
=
u_el
.
begin_reinterpret
(
nb_dof
*
nb_nodes_per_element
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
for_each_element
(
nb_element
,
filter_elements
,
[
&
](
auto
&&
el
)
{
auto
&
uq
=
*
out_it
;
const
auto
&
u
=
*
u_it
;
auto
N
=
Tensor3
<
Real
>
(
shapes_it
[
el
]);
for
(
auto
&&
q
:
arange
(
uq
.
size
(
2
)))
{
auto
uq_q
=
Matrix
<
Real
>
(
uq
(
q
));
auto
u_q
=
Matrix
<
Real
>
(
u
(
q
));
auto
N_q
=
Matrix
<
Real
>
(
N
(
q
));
uq_q
.
mul
<
false
,
false
>
(
N_q
,
u_q
);
}
++
out_it
;
++
u_it
;
});
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
gradientOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_nablauq
,
UInt
nb_dof
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
const
auto
&
shapesd
=
shapes_derivatives
(
itp_type
,
ghost_type
);
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
element_dimension
=
ElementClass
<
type
>::
getSpatialDimension
();
auto
nb_quad_points_per_element
=
integration_points
(
type
,
ghost_type
).
cols
();
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
Array
<
Real
>
u_el
(
0
,
nb_nodes_per_element
*
nb_dof
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
auto
nb_quad_points
=
nb_quad_points_per_element
*
u_el
.
size
();
out_nablauq
.
resize
(
nb_quad_points
);
auto
out_it
=
out_nablauq
.
begin_reinterpret
(
element_dimension
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
auto
shapesd_it
=
shapesd
.
begin_reinterpret
(
element_dimension
,
nb_dof
*
nb_nodes_per_element
,
nb_quad_points_per_element
,
nb_element
);
auto
u_it
=
u_el
.
begin_reinterpret
(
nb_dof
*
nb_nodes_per_element
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
for_each_element
(
nb_element
,
filter_elements
,
[
&
](
auto
&&
el
)
{
auto
&
nablau
=
*
out_it
;
const
auto
&
u
=
*
u_it
;
auto
B
=
Tensor3
<
Real
>
(
shapesd_it
[
el
]);
for
(
auto
&&
q
:
arange
(
nablau
.
size
(
2
)))
{
auto
nablau_q
=
Matrix
<
Real
>
(
nablau
(
q
));
auto
u_q
=
Matrix
<
Real
>
(
u
(
q
));
auto
B_q
=
Matrix
<
Real
>
(
B
(
q
));
nablau_q
.
mul
<
false
,
false
>
(
B_q
,
u_q
);
}
++
out_it
;
++
u_it
;
});
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
ElementType
type
>
void
ShapeStructural
<
_ek_structural
>::
computeBtD
(
const
Array
<
Real
>
&
Ds
,
Array
<
Real
>
&
BtDs
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
auto
nb_stress
=
ElementClass
<
type
>::
getNbStressComponents
();
auto
nb_dof_per_element
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
()
*
mesh
.
getNbNodesPerElement
(
type
);
const
auto
&
shapes_derivatives
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
Array
<
Real
>
shapes_derivatives_filtered
(
0
,
shapes_derivatives
.
getNbComponent
());
auto
&&
view
=
make_view
(
shapes_derivatives
,
nb_stress
,
nb_dof_per_element
);
auto
B_it
=
view
.
begin
();
auto
B_end
=
view
.
end
();
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes_derivatives
,
shapes_derivatives_filtered
,
type
,
ghost_type
,
filter_elements
);
auto
&&
view
=
make_view
(
shapes_derivatives_filtered
,
nb_stress
,
nb_dof_per_element
);
B_it
=
view
.
begin
();
B_end
=
view
.
end
();
}
for
(
auto
&&
values
:
zip
(
range
(
B_it
,
B_end
),
make_view
(
Ds
,
nb_stress
),
make_view
(
BtDs
,
BtDs
.
getNbComponent
())))
{
const
auto
&
B
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D
=
std
::
get
<
2
>
(
values
);
Bt_D
.
template
mul
<
true
>
(
B
,
D
);
}
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
ElementType
type
>
void
ShapeStructural
<
_ek_structural
>::
computeNtb
(
const
Array
<
Real
>
&
bs
,
Array
<
Real
>
&
Ntbs
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
auto
nb_dof
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
const
auto
&
shapes
=
this
->
shapes
(
itp_type
,
ghost_type
);
Array
<
Real
>
shapes_filtered
(
0
,
shapes
.
getNbComponent
());
auto
&&
view
=
make_view
(
shapes
,
nb_dof
,
nb_dof
*
nb_nodes_per_element
);
auto
N_it
=
view
.
begin
();
auto
N_end
=
view
.
end
();
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes
,
shapes_filtered
,
type
,
ghost_type
,
filter_elements
);
auto
&&
view
=
make_view
(
shapes_filtered
,
nb_dof
,
nb_dof
*
nb_nodes_per_element
);
N_it
=
view
.
begin
();
N_end
=
view
.
end
();
}
for
(
auto
&&
values
:
zip
(
range
(
N_it
,
N_end
),
make_view
(
bs
,
nb_dof
),
make_view
(
Ntbs
,
nb_dof
*
nb_nodes_per_element
)))
{
const
auto
&
N
=
std
::
get
<
0
>
(
values
);
const
auto
&
b
=
std
::
get
<
1
>
(
values
);
auto
&
Nt_b
=
std
::
get
<
2
>
(
values
);
Nt_b
.
template
mul
<
true
>
(
N
,
b
);
}
}
}
// namespace akantu
#endif
/* AKANTU_SHAPE_STRUCTURAL_INLINE_IMPL_HH_ */
Event Timeline
Log In to Comment