Page MenuHomec4science

internal_field.hh
No OneTemporary

File Metadata

Created
Sat, Apr 27, 10:23

internal_field.hh

/**
* @file internal_field.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Thu Feb 08 2018
*
* @brief Constitutive law internal properties
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "element_type_map.hh"
/* -------------------------------------------------------------------------- */
#include <memory>
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_INTERNAL_FIELD_HH_
#define AKANTU_INTERNAL_FIELD_HH_
namespace akantu {
class ConstitutiveLawInternalHandler;
class FEEngine;
} // namespace akantu
namespace akantu {
class InternalFieldBase
: public std::enable_shared_from_this<InternalFieldBase> {
public:
InternalFieldBase(const ID & id) : id_(id) {}
/// activate the history of this field
virtual void initializeHistory() = 0;
/// resize the arrays and set the new element to 0
virtual void resize() = 0;
/// save the current values in the history
virtual void saveCurrentValues() = 0;
/// restore the previous values from the history
virtual void restorePreviousValues() = 0;
/// remove the quadrature points corresponding to suppressed elements
virtual void
removeIntegrationPoints(const ElementTypeMapArray<UInt> & new_numbering) = 0;
virtual bool hasHistory() const = 0;
auto getRegisterID() const { return id_; }
protected:
ID id_;
};
/**
* class for the internal fields of constitutive law
* to store values for each quadrature
*/
template <typename T>
class InternalField : public InternalFieldBase, public ElementTypeMapArray<T> {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
InternalField(const ID & id,
ConstitutiveLawInternalHandler & constitutive_law);
~InternalField() override;
/// This constructor is only here to let cohesive elements compile
InternalField(const ID & id,
ConstitutiveLawInternalHandler & constitutive_law,
const ID & fem_id,
const ElementTypeMapArray<UInt> & element_filter);
/// More general constructor
InternalField(const ID & id,
ConstitutiveLawInternalHandler & constitutive_law, UInt dim,
const ID & fem_id,
const ElementTypeMapArray<UInt> & element_filter);
InternalField(const ID & id, const InternalField<T> & other);
InternalField operator=(const InternalField &) = delete;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// function to reset the FEEngine for the internal fieldx
// virtual void setFEEngine(FEEngine & fe_engine);
/// function to reset the element kind for the internal
virtual void setElementKind(ElementKind element_kind);
/// initialize the field to a given number of component
virtual void initialize(UInt nb_component);
/// activate the history of this field
void initializeHistory() override;
/// resize the arrays and set the new element to 0
void resize() override;
/// set the field to a given value v
virtual void setDefaultValue(const T & v);
/// reset all the fields to the default value
virtual void reset();
/// save the current values in the history
void saveCurrentValues() override;
/// restore the previous values from the history
void restorePreviousValues() override;
/// remove the quadrature points corresponding to suppressed elements
void removeIntegrationPoints(
const ElementTypeMapArray<UInt> & new_numbering) override;
/// print the content
void printself(std::ostream & stream, int /*indent*/ = 0) const override;
/// get the default value
inline operator T() const;
virtual FEEngine & getFEEngine() { return fem; }
virtual const FEEngine & getFEEngine() const { return fem; }
/// AKANTU_GET_MACRO(FEEngine, *fem, FEEngine &);
protected:
/// initialize the arrays in the ElementTypeMapArray<T>
void internalInitialize(UInt nb_component);
/// set the values for new internals
virtual void setArrayValues(T * begin, T * end);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get filter types for range loop
decltype(auto) elementTypes(GhostType ghost_type = _not_ghost) const {
return ElementTypeMapArray<T>::elementTypes(
_spatial_dimension = this->spatial_dimension,
_element_kind = this->element_kind, _ghost_type = ghost_type);
}
/// get filter types for range loop
decltype(auto) filterTypes(GhostType ghost_type = _not_ghost) const {
return this->element_filter.elementTypes(
_spatial_dimension = this->spatial_dimension,
_element_kind = this->element_kind, _ghost_type = ghost_type);
}
/// get the array for a given type of the element_filter
const Array<UInt> & getFilter(ElementType type,
GhostType ghost_type = _not_ghost) const {
return this->element_filter(type, ghost_type);
}
/// get the Array corresponding to the type en ghost_type specified
virtual Array<T> & operator()(ElementType type,
GhostType ghost_type = _not_ghost) {
return ElementTypeMapArray<T>::operator()(type, ghost_type);
}
virtual const Array<T> & operator()(ElementType type,
GhostType ghost_type = _not_ghost) const {
return ElementTypeMapArray<T>::operator()(type, ghost_type);
}
virtual Array<T> & previous(ElementType type,
GhostType ghost_type = _not_ghost) {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return this->previous_values->operator()(type, ghost_type);
}
virtual const Array<T> & previous(ElementType type,
GhostType ghost_type = _not_ghost) const {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return this->previous_values->operator()(type, ghost_type);
}
virtual InternalField<T> & previous() {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return *(this->previous_values);
}
virtual const InternalField<T> & previous() const {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return *(this->previous_values);
}
/// check if the history is used or not
bool hasHistory() const override { return (previous_values != nullptr); }
/// get the kind treated by the internal
ElementKind getElementKind() const { return element_kind; }
/// return the number of components
UInt getNbComponent() const { return nb_component; }
/// return the spatial dimension corresponding to the internal element type
/// loop filter
UInt getSpatialDimension() const { return this->spatial_dimension; }
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// the constitutive_law for which this is an internal parameter
ConstitutiveLawInternalHandler & constitutive_law;
/// the fem containing the mesh and the element informations
FEEngine & fem;
/// Element filter if needed
const ElementTypeMapArray<UInt> & element_filter;
/// default value
T default_value{};
/// spatial dimension of the element to consider
UInt spatial_dimension{0};
/// ElementKind of the element to consider
ElementKind element_kind{_ek_regular};
/// Number of component of the internal field
UInt nb_component{0};
/// Is the field initialized
bool is_init{false};
/// previous values
std::unique_ptr<InternalField<T>> previous_values;
};
/// standard output stream operator
template <typename T>
inline std::ostream & operator<<(std::ostream & stream,
const InternalField<T> & _this) {
_this.printself(stream);
return stream;
}
} // namespace akantu
#endif /* AKANTU_INTERNAL_FIELD_HH_ */

Event Timeline