Page MenuHomec4science

solver_callback.hh
No OneTemporary

File Metadata

Created
Sat, Apr 27, 11:34

solver_callback.hh

/**
* @file solver_callback.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Wed Nov 27 2019
*
* @brief Class defining the interface for non_linear_solver callbacks
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SOLVER_CALLBACK_HH_
#define AKANTU_SOLVER_CALLBACK_HH_
namespace akantu {
class DOFManager;
}
namespace akantu {
class SolverCallback {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
explicit SolverCallback(DOFManager & dof_manager);
explicit SolverCallback();
/* ------------------------------------------------------------------------ */
virtual ~SolverCallback();
protected:
void setDOFManager(DOFManager & dof_manager);
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// get the type of matrix needed
virtual MatrixType getMatrixType(const ID &) const = 0;
/// callback to assemble a Matrix
virtual void assembleMatrix(const ID &) = 0;
/// callback to assemble a lumped Matrix
virtual void assembleLumpedMatrix(const ID &) = 0;
/// callback to assemble the residual (rhs)
virtual void assembleResidual() = 0;
/// callback to assemble the rhs parts, (e.g. internal_forces +
/// external_forces)
virtual void assembleResidual(const ID & /*residual_part*/) {}
/* ------------------------------------------------------------------------ */
/* Dynamic simulations part */
/* ------------------------------------------------------------------------ */
/// callback for the predictor (in case of dynamic simulation)
virtual void predictor() {}
/// callback for the corrector (in case of dynamic simulation)
virtual void corrector() {}
/// tells if the residual can be computed in separated parts
virtual bool canSplitResidual() const { return false; }
/* ------------------------------------------------------------------------ */
/* management callbacks */
/* ------------------------------------------------------------------------ */
virtual void beforeSolveStep() {}
virtual void afterSolveStep(bool /*converged*/ = true) {}
DOFManager & getSCDOFManager() { return *sc_dof_manager; }
protected:
/// DOFManager prefixed to avoid collision in multiple inheritance cases
DOFManager * sc_dof_manager{nullptr};
};
namespace debug {
class SolverCallbackResidualPartUnknown : public Exception {
public:
SolverCallbackResidualPartUnknown(const ID & residual_part)
: Exception(residual_part + " is not known here.") {}
};
} // namespace debug
/* -------------------------------------------------------------------------- */
class InterceptSolverCallback : public SolverCallback {
public:
InterceptSolverCallback(SolverCallback & solver_callback)
: solver_callback(solver_callback) {}
/// get the type of matrix needed
MatrixType getMatrixType(const ID & matrix_id) const override {
return solver_callback.getMatrixType(matrix_id);
}
/// callback to assemble a Matrix
void assembleMatrix(const ID & matrix_id) override {
solver_callback.assembleMatrix(matrix_id);
}
/// callback to assemble a lumped Matrix
void assembleLumpedMatrix(const ID & matrix_id) override {
solver_callback.assembleLumpedMatrix(matrix_id);
}
/// callback to assemble the residual (rhs)
void assembleResidual() override { solver_callback.assembleResidual(); }
/// callback to assemble the rhs parts, (e.g. internal_forces +
/// external_forces)
void assembleResidual(const ID & residual_part) override {
solver_callback.assembleResidual(residual_part);
}
/* ------------------------------------------------------------------------ */
/* Dynamic simulations part */
/* ------------------------------------------------------------------------ */
/// callback for the predictor (in case of dynamic simulation)
void predictor() override { solver_callback.predictor(); }
/// callback for the corrector (in case of dynamic simulation)
void corrector() override { solver_callback.corrector(); }
/// tells if the residual can be computed in separated parts
bool canSplitResidual() const override {
return solver_callback.canSplitResidual();
}
/* ------------------------------------------------------------------------ */
/* management callbacks */
/* ------------------------------------------------------------------------ */
void beforeSolveStep() override { solver_callback.beforeSolveStep(); }
void afterSolveStep(bool converged = true) override {
solver_callback.afterSolveStep(converged);
}
protected:
SolverCallback & solver_callback;
};
} // namespace akantu
#endif /* AKANTU_SOLVER_CALLBACK_HH_ */

Event Timeline