Page MenuHomec4science

heat_transfer_model.hh
No OneTemporary

File Metadata

Created
Fri, May 17, 19:39

heat_transfer_model.hh

/**
* @file heat_transfer_model.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author Srinivasa Babu Ramisetti <srinivasa.ramisetti@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Rui Wang <rui.wang@epfl.ch>
*
* @date creation: Sun May 01 2011
* @date last modification: Tue Dec 08 2015
*
* @brief Model of Heat Transfer
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_HEAT_TRANSFER_MODEL_HH__
#define __AKANTU_HEAT_TRANSFER_MODEL_HH__
/* -------------------------------------------------------------------------- */
#include "data_accessor.hh"
#include "integrator_gauss.hh"
#include "model.hh"
#include "shape_lagrange.hh"
namespace akantu {
class IntegrationScheme1stOrder;
}
namespace akantu {
class HeatTransferModel : public Model,
public DataAccessor<Element>,
public DataAccessor<UInt> {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
typedef FEEngineTemplate<IntegratorGauss, ShapeLagrange> MyFEEngineType;
HeatTransferModel(Mesh & mesh, UInt spatial_dimension = _all_dimensions,
const ID & id = "heat_transfer_model",
const MemoryID & memory_id = 0);
virtual ~HeatTransferModel();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
protected:
/// generic function to initialize everything ready for explicit dynamics
void initFullImpl(const ModelOptions & options) override;
/// read one material file to instantiate all the materials
void readMaterials();
/// allocate all vectors
void initSolver(TimeStepSolverType, NonLinearSolverType) override;
/// initialize the model
void initModel() override;
/// allocate all vectors
void assembleJacobian();
/// compute the heat flux
void assembleResidual() override;
/// get the type of matrix needed
MatrixType getMatrixType(const ID &) override;
/// callback to assemble a Matrix
void assembleMatrix(const ID &) override;
/// callback to assemble a lumped Matrix
void assembleLumpedMatrix(const ID &) override;
std::tuple<ID, TimeStepSolverType>
getDefaultSolverID(const AnalysisMethod & method) override;
ModelSolverOptions
getDefaultSolverOptions(const TimeStepSolverType & type) const;
/* ------------------------------------------------------------------------ */
/* Methods for explicit */
/* ------------------------------------------------------------------------ */
public:
/// compute and get the stable time step
Real getStableTimeStep();
/// compute the internal heat flux
void assembleInternalHeatRate();
/// calculate the lumped capacity vector for heat transfer problem
void assembleCapacityLumped();
/* ------------------------------------------------------------------------ */
/* Methods for implicit */
/* ------------------------------------------------------------------------ */
public:
/// assemble the conductivity matrix
void assembleConductivityMatrix(bool compute_conductivity = true);
/// assemble the conductivity matrix
void assembleCapacity();
/// assemble the conductivity matrix
void assembleCapacity(GhostType ghost_type);
/// compute the capacity on quadrature points
void computeRho(Array<Real> & rho, ElementType type, GhostType ghost_type);
protected:
/// computation of the residual for the convergence loop
void updateResidualInternal();
private:
/// compute the heat flux on ghost types
void updateResidual(const GhostType & ghost_type,
bool compute_conductivity = false);
/// calculate the lumped capacity vector for heat transfer problem (w
/// ghost type)
void assembleCapacityLumped(const GhostType & ghost_type);
/// assemble the conductivity matrix (w/ ghost type)
template <UInt dim>
void assembleConductivityMatrix(const GhostType & ghost_type,
bool compute_conductivity = true);
/// assemble the conductivity matrix
template <UInt dim>
void assembleConductivityMatrix(const ElementType & type,
const GhostType & ghost_type,
bool compute_conductivity = true);
/// compute the conductivity tensor for each quadrature point in an array
void computeConductivityOnQuadPoints(const GhostType & ghost_type);
/// compute vector k \grad T for each quadrature point
void computeKgradT(const GhostType & ghost_type);
/// compute the thermal energy
Real computeThermalEnergyByNode();
/* ------------------------------------------------------------------------ */
/* Data Accessor inherited members */
/* ------------------------------------------------------------------------ */
public:
inline UInt getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) override;
inline UInt getNbData(const Array<UInt> & indexes,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer,
const Array<UInt> & indexes,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<UInt> & indexes,
const SynchronizationTag & tag) override;
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public:
dumper::Field * createNodalFieldReal(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
dumper::Field * createNodalFieldBool(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
dumper::Field * createElementalField(const std::string & field_name,
const std::string & group_name,
bool padding_flag,
const UInt & spatial_dimension,
const ElementKind & kind) override;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
AKANTU_GET_MACRO(Density, density, Real);
AKANTU_GET_MACRO(Capacity, capacity, Real);
/// get the dimension of the system space
AKANTU_GET_MACRO(SpatialDimension, spatial_dimension, UInt);
/// get the current value of the time step
AKANTU_GET_MACRO(TimeStep, time_step, Real);
/// get the assembled heat flux
AKANTU_GET_MACRO(InternalHeatRate, *internal_heat_rate, Array<Real> &);
/// get the lumped capacity
AKANTU_GET_MACRO(CapacityLumped, *capacity_lumped, Array<Real> &);
/// get the boundary vector
AKANTU_GET_MACRO(BlockedDOFs, *blocked_dofs, Array<bool> &);
/// get the external heat rate vector
AKANTU_GET_MACRO(ExternalHeatRate, *external_heat_rate, Array<Real> &);
/// get the temperature gradient
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(TemperatureGradient,
temperature_gradient, Real);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ConductivityOnQpoints,
conductivity_on_qpoints, Real);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(TemperatureOnQpoints,
temperature_on_qpoints, Real);
/// internal variables
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(KGradtOnQpoints, k_gradt_on_qpoints,
Real);
/// get the temperature
AKANTU_GET_MACRO(Temperature, *temperature, Array<Real> &);
/// get the temperature derivative
AKANTU_GET_MACRO(TemperatureRate, *temperature_rate, Array<Real> &);
/// get the energy denominated by thermal
Real getEnergy(const std::string & energy_id, const ElementType & type,
UInt index);
/// get the energy denominated by thermal
Real getEnergy(const std::string & energy_id);
/// get the thermal energy for a given element
Real getThermalEnergy(const ElementType & type, UInt index);
/// get the thermal energy for a given element
Real getThermalEnergy();
protected:
/* ------------------------------------------------------------------------ */
FEEngine & getFEEngineBoundary(const ID & name = "") override;
/* ----------------------------------------------------------------------- */
template <class iterator>
void getThermalEnergy(iterator Eth, Array<Real>::const_iterator<Real> T_it,
Array<Real>::const_iterator<Real> T_end) const;
template <typename T>
void allocNodalField(Array<T> *& array, const ID & name);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private:
/// number of iterations
UInt n_iter;
/// time step
Real time_step;
/// temperatures array
Array<Real> * temperature{nullptr};
/// temperatures derivatives array
Array<Real> * temperature_rate{nullptr};
/// increment array (@f$\delta \dot T@f$ or @f$\delta T@f$)
Array<Real> * increment{nullptr};
/// the density
Real density;
/// the speed of the changing temperature
ElementTypeMapArray<Real> temperature_gradient;
/// temperature field on quadrature points
ElementTypeMapArray<Real> temperature_on_qpoints;
/// conductivity tensor on quadrature points
ElementTypeMapArray<Real> conductivity_on_qpoints;
/// vector k \grad T on quad points
ElementTypeMapArray<Real> k_gradt_on_qpoints;
/// external flux vector
Array<Real> * external_heat_rate{nullptr};
/// residuals array
Array<Real> * internal_heat_rate{nullptr};
// lumped vector
Array<Real> * capacity_lumped{nullptr};
/// boundary vector
Array<bool> * blocked_dofs{nullptr};
// realtime
Real time;
/// capacity
Real capacity;
// conductivity matrix
Matrix<Real> conductivity;
// linear variation of the conductivity (for temperature dependent
// conductivity)
Real conductivity_variation;
// reference temperature for the interpretation of temperature variation
Real T_ref;
// the biggest parameter of conductivity matrix
Real conductivitymax;
/// analysis method
AnalysisMethod method;
bool compute_conductivity;
};
} // akantu
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
#include "heat_transfer_model_inline_impl.cc"
#endif /* __AKANTU_HEAT_TRANSFER_MODEL_HH__ */

Event Timeline