Page MenuHomec4science

heat_transfer_model.hh
No OneTemporary

File Metadata

Created
Wed, May 1, 16:47

heat_transfer_model.hh

/**
* @file heat_transfer_model.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author Srinivasa Babu Ramisetti <srinivasa.ramisetti@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Rui Wang <rui.wang@epfl.ch>
*
* @date creation: Sun May 01 2011
* @date last modification: Mon Mar 15 2021
*
* @brief Model of Heat Transfer
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "data_accessor.hh"
#include "fe_engine.hh"
#include "model.hh"
/* -------------------------------------------------------------------------- */
#include <array>
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_HEAT_TRANSFER_MODEL_HH_
#define AKANTU_HEAT_TRANSFER_MODEL_HH_
namespace akantu {
template <ElementKind kind, class IntegrationOrderFunctor>
class IntegratorGauss;
template <ElementKind kind> class ShapeLagrange;
} // namespace akantu
namespace akantu {
class HeatTransferModel : public Model,
public DataAccessor<Element>,
public DataAccessor<Idx> {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
using FEEngineType = FEEngineTemplate<IntegratorGauss, ShapeLagrange>;
HeatTransferModel(Mesh & mesh, Int spatial_dimension = _all_dimensions,
const ID & id = "heat_transfer_model",
std::shared_ptr<DOFManager> dof_manager = nullptr);
~HeatTransferModel() override;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
protected:
/// generic function to initialize everything ready for explicit dynamics
void initFullImpl(const ModelOptions & options) override;
/// read one material file to instantiate all the materials
void readMaterials();
/// allocate all vectors
void initSolver(TimeStepSolverType time_step_solver_type,
NonLinearSolverType non_linear_solver_type) override;
/// initialize the model
void initModel() override;
void predictor() override;
/// compute the heat flux
void assembleResidual() override;
/// get the type of matrix needed
MatrixType getMatrixType(const ID & matrix_id) const override;
/// callback to assemble a Matrix
void assembleMatrix(const ID & matrix_id) override;
/// callback to assemble a lumped Matrix
void assembleLumpedMatrix(const ID & matrix_id) override;
std::tuple<ID, TimeStepSolverType>
getDefaultSolverID(const AnalysisMethod & method) override;
ModelSolverOptions
getDefaultSolverOptions(const TimeStepSolverType & type) const override;
/* ------------------------------------------------------------------------ */
/* Methods for explicit */
/* ------------------------------------------------------------------------ */
public:
/// compute and get the stable time step
Real getStableTimeStep();
/// set the stable timestep
void setTimeStep(Real time_step, const ID & solver_id = "") override;
// temporary protection to prevent bad usage: should check for bug
protected:
/// compute the internal heat flux \todo Need code review: currently not
/// public method
void assembleInternalHeatRate();
public:
/// calculate the lumped capacity vector for heat transfer problem
void assembleCapacityLumped();
public:
/// assemble the conductivity matrix
void assembleConductivityMatrix();
/// assemble the conductivity matrix
void assembleCapacity();
/// compute the capacity on quadrature points
void computeRho(Array<Real> & rho, ElementType type, GhostType ghost_type);
private:
/// calculate the lumped capacity vector for heat transfer problem (w
/// ghost type)
void assembleCapacityLumped(GhostType ghost_type);
/// compute the conductivity tensor for each quadrature point in an array
void computeConductivityOnQuadPoints(GhostType ghost_type);
/// compute vector \f[k \grad T\f] for each quadrature point
void computeKgradT(GhostType ghost_type);
/// compute the thermal energy
Real computeThermalEnergyByNode();
/* ------------------------------------------------------------------------ */
/* Data Accessor inherited members */
/* ------------------------------------------------------------------------ */
public:
inline Int getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) override;
inline Int getNbData(const Array<Idx> & indexes,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer, const Array<Idx> & indexes,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<Idx> & indexes,
const SynchronizationTag & tag) override;
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public:
std::shared_ptr<dumpers::Field>
createNodalFieldReal(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
std::shared_ptr<dumpers::Field>
createNodalFieldBool(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
std::shared_ptr<dumpers::Field>
createElementalField(const std::string & field_name,
const std::string & group_name, bool padding_flag,
Int spatial_dimension, ElementKind kind) override;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
AKANTU_GET_MACRO_AUTO(Density, density);
AKANTU_GET_MACRO_AUTO(Capacity, capacity);
/// get the dimension of the system space
AKANTU_GET_MACRO_AUTO(SpatialDimension, spatial_dimension);
/// get the current value of the time step
AKANTU_GET_MACRO_AUTO(TimeStep, time_step);
/// get the assembled heat flux
AKANTU_GET_MACRO_DEREF_PTR(InternalHeatRate, internal_heat_rate);
/// get the boundary vector
AKANTU_GET_MACRO_DEREF_PTR_NOT_CONST(BlockedDOFs, blocked_dofs);
/// get the external heat rate vector
AKANTU_GET_MACRO_DEREF_PTR_NOT_CONST(ExternalHeatRate, external_heat_rate);
/// get the temperature gradient
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(TemperatureGradient,
temperature_gradient, Real);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ConductivityOnQpoints,
conductivity_on_qpoints, Real);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(TemperatureOnQpoints,
temperature_on_qpoints, Real);
/// internal variables
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(KgradT, k_gradt_on_qpoints, Real);
/// get the temperature
AKANTU_GET_MACRO_DEREF_PTR_NOT_CONST(Temperature, temperature);
/// get the temperature derivative
AKANTU_GET_MACRO_DEREF_PTR(TemperatureRate, temperature_rate);
/// get the energy denominated by thermal
Real getEnergy(const std::string & energy_id, ElementType type, Idx index);
/// get the energy denominated by thermal
Real getEnergy(const std::string & energy_id);
/// get the thermal energy for a given element
Real getThermalEnergy(ElementType type, Idx index);
/// get the thermal energy for a given element
Real getThermalEnergy();
protected:
/* ------------------------------------------------------------------------ */
FEEngine & getFEEngineBoundary(const ID & name = "") override;
/* ----------------------------------------------------------------------- */
template <class iterator, class const_iterator>
void getThermalEnergy(iterator Eth, const_iterator T_it,
const_iterator T_end) const;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private:
/// time step
Real time_step;
/// temperatures array
std::unique_ptr<Array<Real>> temperature;
/// temperatures derivatives array
std::unique_ptr<Array<Real>> temperature_rate;
/// increment array (@f$\delta \dot T@f$ or @f$\delta T@f$)
std::unique_ptr<Array<Real>> increment;
/// the density
Real density;
/// the speed of the changing temperature
ElementTypeMapArray<Real> temperature_gradient;
/// temperature field on quadrature points
ElementTypeMapArray<Real> temperature_on_qpoints;
/// conductivity tensor on quadrature points
ElementTypeMapArray<Real> conductivity_on_qpoints;
/// vector \f[k \grad T\f] on quad points
ElementTypeMapArray<Real> k_gradt_on_qpoints;
/// external flux vector
std::unique_ptr<Array<Real>> external_heat_rate;
/// residuals array
std::unique_ptr<Array<Real>> internal_heat_rate;
/// boundary vector
std::unique_ptr<Array<bool>> blocked_dofs;
// realtime
// Real time;
/// capacity
Real capacity;
// conductivity matrix
Matrix<Real> conductivity;
// linear variation of the conductivity (for temperature dependent
// conductivity)
Real conductivity_variation;
// reference temperature for the interpretation of temperature variation
Real T_ref;
// the biggest parameter of conductivity matrix
// Real conductivitymax;
bool need_to_reassemble_capacity{true};
bool need_to_reassemble_capacity_lumped{true};
Int temperature_release{0};
Int conductivity_matrix_release{-1};
std::unordered_map<GhostType, bool> initial_conductivity{{_not_ghost, true},
{_ghost, true}};
std::unordered_map<GhostType, Int> conductivity_release{{_not_ghost, 0},
{_ghost, 0}};
};
} // namespace akantu
#endif /* AKANTU_HEAT_TRANSFER_MODEL_HH_ */

Event Timeline