Page MenuHomec4science

internal_field.hh
No OneTemporary

File Metadata

Created
Wed, May 1, 12:22

internal_field.hh

/**
* @file internal_field.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Thu Feb 08 2018
*
* @brief Material internal properties
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "element_type_map.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_INTERNAL_FIELD_HH_
#define AKANTU_INTERNAL_FIELD_HH_
namespace akantu {
class Material;
class FEEngine;
/**
* class for the internal fields of materials
* to store values for each quadrature
*/
template <class Material, typename T> class InternalFieldTmpl : public ElementTypeMapArray<T> {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
InternalFieldTmpl(const ID & id, Material & material);
~InternalFieldTmpl() override;
/// This constructor is only here to let cohesive elements compile
InternalFieldTmpl(const ID & id, Material & material, FEEngine & fem,
const ElementTypeMapArray<UInt> & element_filter);
/// More general constructor
InternalFieldTmpl(const ID & id, Material & material, UInt dim, FEEngine & fem,
const ElementTypeMapArray<UInt> & element_filter);
InternalFieldTmpl(const ID & id, const InternalFieldTmpl<Material, T> & other);
private:
InternalFieldTmpl operator=(const InternalFieldTmpl &) = delete;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// function to reset the FEEngine for the internal field
virtual void setFEEngine(FEEngine & fe_engine);
/// function to reset the element kind for the internal
virtual void setElementKind(ElementKind element_kind);
/// initialize the field to a given number of component
virtual void initialize(UInt nb_component);
/// activate the history of this field
virtual void initializeHistory();
/// resize the arrays and set the new element to 0
virtual void resize();
/// set the field to a given value v
virtual void setDefaultValue(const T & v);
/// reset all the fields to the default value
virtual void reset();
/// save the current values in the history
virtual void saveCurrentValues();
/// restore the previous values from the history
virtual void restorePreviousValues();
/// remove the quadrature points corresponding to suppressed elements
virtual void
removeIntegrationPoints(const ElementTypeMapArray<UInt> & new_numbering);
/// print the content
void printself(std::ostream & stream, int /*indent*/ = 0) const override;
/// get the default value
inline operator T() const;
virtual FEEngine & getFEEngine() { return *fem; }
virtual const FEEngine & getFEEngine() const { return *fem; }
/// AKANTU_GET_MACRO(FEEngine, *fem, FEEngine &);
protected:
/// initialize the arrays in the ElementTypeMapArray<T>
void internalInitialize(UInt nb_component);
/// set the values for new internals
virtual void setArrayValues(T * begin, T * end);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
// using type_iterator = typename ElementTypeMapArray<T>::type_iterator;
// using filter_type_iterator =
// typename ElementTypeMapArray<UInt>::type_iterator;
// /// get the type iterator on all types contained in the internal field
// type_iterator firstType(GhostType ghost_type = _not_ghost) const {
// return ElementTypeMapArray<T>::firstType(this->spatial_dimension,
// ghost_type, this->element_kind);
// }
// /// get the type iterator on the last type contained in the internal field
// type_iterator lastType(GhostType ghost_type = _not_ghost) const {
// return ElementTypeMapArray<T>::lastType(this->spatial_dimension,
// ghost_type,
// this->element_kind);
// }
// /// get the type iterator on all types contained in the internal field
// filter_type_iterator
// filterFirstType(GhostType ghost_type = _not_ghost) const {
// return this->element_filter.firstType(this->spatial_dimension,
// ghost_type,
// this->element_kind);
// }
// /// get the type iterator on the last type contained in the internal field
// filter_type_iterator
// filterLastType(GhostType ghost_type = _not_ghost) const {
// return this->element_filter.lastType(this->spatial_dimension, ghost_type,
// this->element_kind);
// }
/// get filter types for range loop
decltype(auto) elementTypes(GhostType ghost_type = _not_ghost) const {
return ElementTypeMapArray<T>::elementTypes(
_spatial_dimension = this->spatial_dimension,
_element_kind = this->element_kind, _ghost_type = ghost_type);
}
/// get filter types for range loop
decltype(auto) filterTypes(GhostType ghost_type = _not_ghost) const {
return this->element_filter.elementTypes(
_spatial_dimension = this->spatial_dimension,
_element_kind = this->element_kind, _ghost_type = ghost_type);
}
/// get the array for a given type of the element_filter
const Array<UInt> &
getFilter(ElementType type,
GhostType ghost_type = _not_ghost) const {
return this->element_filter(type, ghost_type);
}
/// get the Array corresponding to the type en ghost_type specified
virtual Array<T> & operator()(ElementType type,
GhostType ghost_type = _not_ghost) {
return ElementTypeMapArray<T>::operator()(type, ghost_type);
}
virtual const Array<T> &
operator()(ElementType type,
GhostType ghost_type = _not_ghost) const {
return ElementTypeMapArray<T>::operator()(type, ghost_type);
}
virtual Array<T> & previous(ElementType type,
GhostType ghost_type = _not_ghost) {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return this->previous_values->operator()(type, ghost_type);
}
virtual const Array<T> &
previous(ElementType type,
GhostType ghost_type = _not_ghost) const {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return this->previous_values->operator()(type, ghost_type);
}
virtual InternalFieldTmpl<Material, T> & previous() {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return *(this->previous_values);
}
virtual const InternalFieldTmpl<Material, T> & previous() const {
AKANTU_DEBUG_ASSERT(previous_values != nullptr,
"The history of the internal "
<< this->getID() << " has not been activated");
return *(this->previous_values);
}
/// check if the history is used or not
bool hasHistory() const { return (previous_values != nullptr); }
/// get the kind treated by the internal
ElementKind getElementKind() const { return element_kind; }
/// return the number of components
UInt getNbComponent() const { return nb_component; }
/// return the spatial dimension corresponding to the internal element type
/// loop filter
UInt getSpatialDimension() const { return this->spatial_dimension; }
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// the material for which this is an internal parameter
Material & material;
/// the fem containing the mesh and the element informations
FEEngine * fem{nullptr};
/// Element filter if needed
const ElementTypeMapArray<UInt> & element_filter;
/// default value
T default_value{};
/// spatial dimension of the element to consider
UInt spatial_dimension{0};
/// ElementKind of the element to consider
ElementKind element_kind{_ek_regular};
/// Number of component of the internal field
UInt nb_component{0};
/// Is the field initialized
bool is_init{false};
/// previous values
std::unique_ptr<InternalFieldTmpl<Material, T>> previous_values;
};
/// standard output stream operator
template <class Material, typename T>
inline std::ostream & operator<<(std::ostream & stream,
const InternalFieldTmpl<Material, T> & _this) {
_this.printself(stream);
return stream;
}
template<typename T>
using InternalField = InternalFieldTmpl<Material, T>;
} // namespace akantu
#endif /* AKANTU_INTERNAL_FIELD_HH_ */

Event Timeline