Page MenuHomec4science

material_cohesive_linear.hh
No OneTemporary

File Metadata

Created
Sat, Apr 27, 08:45

material_cohesive_linear.hh

/**
* @file material_cohesive_linear.hh
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue May 08 2012
* @date last modification: Tue Jul 29 2014
*
* @brief Linear irreversible cohesive law of mixed mode loading with
* random stress definition for extrinsic type
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material_cohesive.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_MATERIAL_COHESIVE_LINEAR_HH__
#define __AKANTU_MATERIAL_COHESIVE_LINEAR_HH__
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
/**
* Cohesive material linear damage for extrinsic case
*
* parameters in the material files :
* - sigma_c : critical stress sigma_c (default: 0)
* - beta : weighting parameter for sliding and normal opening (default: 0)
* - G_cI : fracture energy for mode I (default: 0)
* - G_cII : fracture energy for mode II (default: 0)
* - penalty : stiffness in compression to prevent penetration
*/
template<UInt spatial_dimension>
class MaterialCohesiveLinear : public MaterialCohesive {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
MaterialCohesiveLinear(SolidMechanicsModel & model, const ID & id = "");
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// initialize the material computed parameter
virtual void initMaterial();
/// check stress for cohesive elements' insertion
virtual void checkInsertion();
protected:
/// constitutive law
void computeTraction(const Array<Real> & normal,
ElementType el_type,
GhostType ghost_type = _not_ghost);
/// compute stress norms on quadrature points for each facet for stress check
virtual void computeStressNorms(const Array<Real> & facet_stress,
Array<Real> & stress_check,
Array<Real> & normal_stress,
ElementType type_facet);
/// compute effective stress norm for insertion check
inline void computeEffectiveNorm(const Matrix<Real> & stress,
const Vector<Real> & normal,
const Vector<Real> & tangent,
Vector<Real> & normal_stress,
Real & effective_norm);
/**
* Scale insertion traction sigma_c according to the volume of the
* two elements surrounding a facet
*/
void scaleInsertionTraction();
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get sigma_c_eff
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(InsertionTraction, sigma_c_eff, Real);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// beta parameter
Real beta;
/// beta square inverse to compute effective norm
Real beta2_inv;
/// mode I fracture energy
Real G_c;
/// kappa parameter
Real kappa;
/// constitutive law scalar to compute delta
Real beta2_kappa2;
/// constitutive law scalar to compute traction
Real beta2_kappa;
/// penalty coefficient
Real penalty;
/// reference volume used to scale sigma_c
Real volume_s;
/// weibull exponent used to scale sigma_c
Real m_s;
/// critical effective stress
RandomInternalField<Real, CohesiveInternalField> sigma_c_eff;
/// effective critical displacement (each element can have a
/// different value)
CohesiveInternalField<Real> delta_c_eff;
/// stress at insertion
CohesiveInternalField<Real> insertion_stress;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
//#include "material_cohesive_linear_inline_impl.cc"
__END_AKANTU__
#endif /* __AKANTU_MATERIAL_COHESIVE_LINEAR_HH__ */

Event Timeline