Page MenuHomec4science

material_phasefield_inline_impl.hh
No OneTemporary

File Metadata

Created
Wed, May 8, 13:54

material_phasefield_inline_impl.hh

/**
* @file material_phasefield_inline_impl.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Dec 13 2010
* @date last modification: Fri Apr 02 2021
*
* @brief Implementation of the inline functions of the material phasefield
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "material_phasefield.hh"
#ifndef AKANTU_MATERIAL_PHASEFIELD_INLINE_IMPL_HH_
#define AKANTU_MATERIAL_PHASEFIELD_INLINE_IMPL_HH_
/* -------------------------------------------------------------------------- */
namespace akantu {
template <UInt spatial_dimension>
inline void MaterialPhaseField<spatial_dimension>::computeEffectiveDamageOnQuad(
Matrix<Real> & grad_u, Real & dam, Real & eff_dam) {
Matrix<Real> strain(spatial_dimension, spatial_dimension);
Matrix<Real> strain_plus(spatial_dimension, spatial_dimension);
Matrix<Real> strain_minus(spatial_dimension, spatial_dimension);
Matrix<Real> strain_dir(spatial_dimension, spatial_dimension);
Matrix<Real> strain_diag_plus(spatial_dimension, spatial_dimension);
Matrix<Real> strain_diag_minus(spatial_dimension, spatial_dimension);
Vector<Real> strain_values(spatial_dimension);
Real trace_plus, trace_minus;
this->template gradUToEpsilon<spatial_dimension>(grad_u, strain);
strain.eig(strain_values, strain_dir);
for (UInt i = 0; i < spatial_dimension; i++) {
strain_diag_plus(i, i) = std::max(Real(0.), strain_values(i));
strain_diag_minus(i, i) = std::min(Real(0.), strain_values(i));
}
Matrix<Real> mat_tmp(spatial_dimension, spatial_dimension);
Matrix<Real> sigma_plus(spatial_dimension, spatial_dimension);
Matrix<Real> sigma_minus(spatial_dimension, spatial_dimension);
mat_tmp.mul<false, true>(strain_diag_plus, strain_dir);
strain_plus.mul<false, false>(strain_dir, mat_tmp);
mat_tmp.mul<false, true>(strain_diag_minus, strain_dir);
strain_minus.mul<false, true>(strain_dir, mat_tmp);
trace_plus = std::max(Real(0.), strain.trace());
trace_minus = std::min(Real(0.), strain.trace());
Real lambda = MaterialElastic<spatial_dimension>::getLambda();
Real mu = MaterialElastic<spatial_dimension>::getMu();
for (UInt i = 0; i < spatial_dimension; i++) {
for (UInt j = 0; j < spatial_dimension; j++) {
sigma_plus(i, j) = static_cast<double>(i == j) * lambda * trace_plus +
2 * mu * strain_plus(i, j);
sigma_minus(i, j) = static_cast<double>(i == j) * lambda * trace_minus +
2 * mu * strain_minus(i, j);
}
}
auto strain_energy_plus = 0.5 * sigma_plus.doubleDot(strain_plus);
auto strain_energy_minus = 0.5 * sigma_minus.doubleDot(strain_minus);
eff_dam = dam * static_cast<Real>(strain_energy_minus < strain_energy_plus);
}
} // namespace akantu
#endif

Event Timeline