Page MenuHomec4science

material_plastic.hh
No OneTemporary

File Metadata

Created
Sat, May 25, 01:27

material_plastic.hh

/**
* Copyright (©) 2010-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "material_elastic.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_MATERIAL_PLASTIC_HH_
#define AKANTU_MATERIAL_PLASTIC_HH_
namespace akantu {
/**
* Parent class for the plastic constitutive laws
* parameters in the material files :
* - h : Hardening parameter (default: 0)
* - sigmay : Yield stress
*/
template <Int dim> class MaterialPlastic : public MaterialElastic<dim> {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
MaterialPlastic(SolidMechanicsModel & model, const ID & id = "",
const ID & fe_engine_id = "");
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/**
* @brief Return potential or plastic energy
*
* Plastic dissipated energy is integrated over time.
*/
Real getEnergy(const std::string & type) override;
/// Update the plastic energy for the current timestep
void updateEnergies(ElementType el_type) override;
/// Compute the true potential energy (w/ elastic strain)
void computePotentialEnergy(ElementType el_type) override;
protected:
/// compute the stress and inelastic strain for the quadrature point
template <class Args, std::enable_if_t<named_tuple_t<Args>::has(
"delta_grad_u"_n)> * = nullptr>
inline void computeStressAndInelasticStrainOnQuad(Args && args) const {
Matrix<Real, dim, dim> delta_grad_u_elastic =
args["delta_grad_u"_n] - args["delta_inelastic_strain"_n];
Matrix<Real, dim, dim> sigma_elastic;
MaterialElastic<dim>::computeStressOnQuad(tuple::make_named_tuple(
"grad_u"_n = delta_grad_u_elastic, "sigma"_n = sigma_elastic));
args["sigma"_n] = args["previous_sigma"_n] + sigma_elastic;
args["inelastic_strain"_n] =
args["previous_inelastic_strain"_n] + args["delta_inelastic_strain"_n];
}
template <class Args, std::enable_if_t<not named_tuple_t<Args>::has(
"delta_grad_u"_n)> * = nullptr>
inline void computeStressAndInelasticStrainOnQuad(Args && args) const {
Matrix<Real, dim, dim> delta_grad_u =
args["grad_u"_n] - args["previous_grad_u"_n];
computeStressAndInelasticStrainOnQuad(
tuple::append(args, "delta_grad_u"_n = delta_grad_u));
}
/// Get the integrated plastic energy for the time step
Real getPlasticEnergy();
decltype(auto) getArguments(ElementType el_type,
GhostType ghost_type = _not_ghost) {
return zip_append(
MaterialElastic<dim>::getArguments(el_type, ghost_type),
"iso_hardening"_n = make_view(this->iso_hardening(el_type, ghost_type)),
"previous_iso_hardening"_n =
make_view(this->iso_hardening.previous(el_type, ghost_type)),
"inelastic_strain"_n =
make_view<dim, dim>(this->inelastic_strain(el_type, ghost_type)),
"previous_inelastic_strain"_n = make_view<dim, dim>(
this->inelastic_strain.previous(el_type, ghost_type)));
}
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// Yield stresss
Real sigma_y;
/// hardening modulus
Real h;
/// isotropic hardening, r
InternalField<Real> & iso_hardening;
/// inelastic strain arrays ordered by element types (inelastic deformation)
InternalField<Real> & inelastic_strain;
/// Plastic energy
InternalField<Real> & plastic_energy;
/// @todo : add a coefficient beta that will multiply the plastic energy
/// increment
/// to compute the energy converted to heat
/// Plastic energy increment
InternalField<Real> & d_plastic_energy;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
} // namespace akantu
#endif /* AKANTU_MATERIAL_PLASTIC_HH_ */

Event Timeline