Page MenuHomec4science

material_python.cc
No OneTemporary

File Metadata

Created
Tue, May 14, 11:27

material_python.cc

/**
* @file material_python.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
*
* @date creation: Fri Nov 13 2015
* @date last modification: Fri Nov 13 2015
*
* @brief Material python implementation
*
* @section LICENSE
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material_python.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
MaterialPython::MaterialPython(SolidMechanicsModel & model, PyObject * obj,
const ID & id)
:
Material(model, id),
PythonFunctor(obj) {
AKANTU_DEBUG_IN();
this->registerInternals();
std::vector<std::string> param_names =
this->callFunctor<std::vector<std::string> >("registerParam");
for (UInt i = 0; i < param_names.size(); ++i) {
std::stringstream sstr;
sstr << "PythonParameter" << i;
this->registerParam(param_names[i], local_params[param_names[i]], 0.,
_pat_parsable, sstr.str());
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void MaterialPython::registerInternals() {
std::vector<std::string> internal_names =
this->callFunctor<std::vector<std::string> >("registerInternals");
std::vector<UInt> internal_sizes;
try {
internal_sizes =
this->callFunctor<std::vector<UInt> >("registerInternalSizes");
} catch (...) {
internal_sizes.assign(internal_names.size(), 1);
}
for (UInt i = 0; i < internal_names.size(); ++i) {
std::stringstream sstr;
sstr << "PythonInternal" << i;
this->internals[internal_names[i]] =
new InternalField<Real>(internal_names[i], *this);
AKANTU_DEBUG_INFO("alloc internal " << internal_names[i] << " "
<< this->internals[internal_names[i]]);
this->internals[internal_names[i]]->initialize(internal_sizes[i]);
}
// making an internal with the quadrature points coordinates
this->internals["quad_coordinates"] = new InternalField<Real>("quad_coordinates", *this);
auto && coords = *this->internals["quad_coordinates"];
coords.initialize(this->getSpatialDimension());
}
/* -------------------------------------------------------------------------- */
void MaterialPython::initMaterial() {
AKANTU_DEBUG_IN();
Material::initMaterial();
auto && coords = *this->internals["quad_coordinates"];
this->model.getFEEngine().computeIntegrationPointsCoordinates(coords,
&this->element_filter);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void MaterialPython::computeStress(ElementType el_type, GhostType ghost_type) {
AKANTU_DEBUG_IN();
std::map<std::string, Array<Real> *> internal_arrays;
for (auto & i : this->internals) {
auto & array = (*i.second)(el_type, ghost_type);
auto & name = i.first;
internal_arrays[name] = &array;
}
auto params = local_params;
params["rho"] = this->rho;
this->callFunctor<void>("computeStress", this->gradu(el_type, ghost_type),
this->stress(el_type, ghost_type), internal_arrays,
params);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <typename it_type>
void MaterialPython::computeStress(Matrix<Real> & grad_u, Matrix<Real> & sigma,
std::vector<it_type> & internal_iterators) {
std::vector<Real> inputs;
for (auto & i : internal_iterators) {
inputs.push_back(*i);
}
for (UInt i = 0; i < inputs.size(); ++i) {
*internal_iterators[i] = inputs[i];
}
}
/* -------------------------------------------------------------------------- */
// void MaterialPython::computeStress(ElementType el_type, GhostType ghost_type)
// {
// AKANTU_DEBUG_IN();
// typedef Array<Real>::iterator<Real> it_type;
// std::vector<it_type> its;
// for (auto & i : this->internals) {
// its.push_back((*i)(el_type, ghost_type).begin());
// }
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type);
// computeStress(grad_u, sigma, its);
// for (auto & b : its)
// ++b;
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;
// AKANTU_DEBUG_OUT();
// }
// /* --------------------------------------------------------------------------
// */
// template <typename it_type>
// void MaterialPython::computeStress(Matrix<Real> & grad_u, Matrix<Real> &
// sigma,
// std::vector<it_type> & internal_iterators)
// {
// std::vector<Real> inputs;
// for (auto & i : internal_iterators) {
// inputs.push_back(*i);
// }
// this->callFunctor<void>("computeStress", grad_u, sigma, inputs);
// for (UInt i = 0; i < inputs.size(); ++i) {
// *internal_iterators[i] = inputs[i];
// }
// }
/* -------------------------------------------------------------------------- */
void MaterialPython::computeTangentModuli(const ElementType & el_type,
Array<Real> & tangent_matrix,
GhostType ghost_type) {
std::map<std::string, Array<Real> *> internal_arrays;
for (auto & i : this->internals) {
auto & array = (*i.second)(el_type, ghost_type);
auto & name = i.first;
internal_arrays[name] = &array;
}
auto params = local_params;
params["rho"] = this->rho;
this->callFunctor<void>("computeTangentModuli",
this->gradu(el_type, ghost_type), tangent_matrix,
internal_arrays, params);
}
/* -------------------------------------------------------------------------- */
Real MaterialPython::getPushWaveSpeed(__attribute__((unused))
const Element & element) const {
auto params = local_params;
params["rho"] = this->rho;
return this->callFunctor<Real>("getPushWaveSpeed", params);
}
} // akantu

Event Timeline