Page MenuHomec4science

material_cohesive_linear.hh
No OneTemporary

File Metadata

Created
Tue, Jun 18, 22:56

material_cohesive_linear.hh

/**
* Copyright (©) 2010-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "material_cohesive.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_MATERIAL_COHESIVE_LINEAR_HH_
#define AKANTU_MATERIAL_COHESIVE_LINEAR_HH_
namespace akantu {
/**
* Cohesive material linear damage for extrinsic case
*
* parameters in the material files :
* - sigma_c : critical stress sigma_c (default: 0)
* - beta : weighting parameter for sliding and normal opening (default:
* 0)
* - G_cI : fracture energy for mode I (default: 0)
* - G_cII : fracture energy for mode II (default: 0)
* - penalty : stiffness in compression to prevent penetration
*/
template <Int dim> class MaterialCohesiveLinear : public MaterialCohesive {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
MaterialCohesiveLinear(SolidMechanicsModel & model, const ID & id = "");
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// initialize the material parameters
void initMaterial() override;
void updateInternalParameters() override;
/// check stress for cohesive elements' insertion
void checkInsertion(bool check_only = false) override;
/// compute effective stress norm for insertion check
template <class D1, class D2, class D3, class D4>
Real computeEffectiveNorm(const Eigen::MatrixBase<D1> & stress,
const Eigen::MatrixBase<D2> & normal,
const Eigen::MatrixBase<D3> & tangent,
const Eigen::MatrixBase<D4> & normal_stress) const;
protected:
/// constitutive law
void computeTraction(ElementType el_type,
GhostType ghost_type = _not_ghost) override;
/// compute tangent stiffness matrix
void computeTangentTraction(ElementType el_type, Array<Real> & tangent_matrix,
GhostType ghost_type) override;
/**
* Scale insertion traction sigma_c according to the volume of the
* two elements surrounding a facet
*
* see the article: F. Zhou and J. F. Molinari "Dynamic crack
* propagation with cohesive elements: a methodology to address mesh
* dependency" International Journal for Numerical Methods in
* Engineering (2004)
*/
void scaleInsertionTraction();
inline decltype(auto) getArguments(ElementType element_type,
GhostType ghost_type) {
using namespace tuple;
return zip_append(
MaterialCohesive::getArguments<dim>(element_type, ghost_type),
"sigma_c"_n = this->sigma_c_eff(element_type, ghost_type),
"delta_c"_n = this->delta_c_eff(element_type, ghost_type),
"insertion_stress"_n =
make_view<dim>(this->insertion_stress(element_type, ghost_type)));
}
/// compute the traction for a given quadrature point
template <typename Args> inline void computeTractionOnQuad(Args && args);
template <class Derived, class Args>
inline void computeTangentTractionOnQuad(Eigen::MatrixBase<Derived> & tangent,
Args && args);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get sigma_c_eff
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(InsertionTraction, sigma_c_eff, Real);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// beta parameter
Real beta;
/// beta square inverse to compute effective norm
Real beta2_inv;
/// mode I fracture energy
Real G_c;
/// kappa parameter
Real kappa;
/// constitutive law scalar to compute delta
Real beta2_kappa2;
/// constitutive law scalar to compute traction
Real beta2_kappa;
/// penalty coefficient
Real penalty;
/// reference volume used to scale sigma_c
Real volume_s;
/// weibull exponent used to scale sigma_c
Real m_s;
/// variable defining if we are recomputing the last loading step
/// after load_reduction
bool recompute;
/// critical effective stress
RandomInternalField<Real, CohesiveInternalField> sigma_c_eff;
/// effective critical displacement (each element can have a
/// different value)
CohesiveInternalField<Real> delta_c_eff;
/// stress at insertion
CohesiveInternalField<Real> insertion_stress;
/// variable saying if there should be penalty contact also after
/// breaking the cohesive elements
bool contact_after_breaking;
/// insertion of cohesive element when stress is high enough just on
/// one quadrature point
bool max_quad_stress_insertion;
Vector<Real, dim> normal_opening;
Vector<Real, dim> tangential_opening;
Real normal_opening_norm{0.};
Real tangential_opening_norm{0.};
bool penetration{false};
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
} // namespace akantu
#include "material_cohesive_linear_inline_impl.hh"
#endif /* AKANTU_MATERIAL_COHESIVE_LINEAR_HH_ */

Event Timeline