Page MenuHomec4science

solid_mechanics_model_cohesive.cc
No OneTemporary

File Metadata

Created
Sat, Apr 27, 18:34

solid_mechanics_model_cohesive.cc

/**
* @file solid_mechanics_model_cohesive.cc
*
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Mauro Corrado <mauro.corrado@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue May 08 2012
* @date last modification: Wed Feb 21 2018
*
* @brief Solid mechanics model for cohesive elements
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
#include "aka_iterators.hh"
#include "cohesive_element_inserter.hh"
#include "element_synchronizer.hh"
#include "facet_synchronizer.hh"
#include "fe_engine_template.hh"
#include "global_ids_updater.hh"
#include "integrator_gauss.hh"
#include "material_cohesive.hh"
#include "mesh_accessor.hh"
#include "mesh_global_data_updater.hh"
#include "parser.hh"
#include "shape_cohesive.hh"
/* -------------------------------------------------------------------------- */
#include "dumpable_inline_impl.hh"
#ifdef AKANTU_USE_IOHELPER
#include "dumper_iohelper_paraview.hh"
#endif
/* -------------------------------------------------------------------------- */
#include <algorithm>
/* -------------------------------------------------------------------------- */
namespace akantu {
class CohesiveMeshGlobalDataUpdater : public MeshGlobalDataUpdater {
public:
CohesiveMeshGlobalDataUpdater(SolidMechanicsModelCohesive & model)
: model(model), mesh(model.getMesh()),
global_ids_updater(model.getMesh(), *model.cohesive_synchronizer) {}
/* ------------------------------------------------------------------------ */
std::tuple<UInt, UInt>
updateData(NewNodesEvent & nodes_event,
NewElementsEvent & elements_event) override {
auto cohesive_nodes_event =
dynamic_cast<CohesiveNewNodesEvent *>(&nodes_event);
if (not cohesive_nodes_event)
return std::make_tuple(nodes_event.getList().size(),
elements_event.getList().size());
/// update nodes type
auto & new_nodes = cohesive_nodes_event->getList();
auto & old_nodes = cohesive_nodes_event->getOldNodesList();
auto local_nb_new_nodes = new_nodes.size();
auto nb_new_nodes = local_nb_new_nodes;
if (mesh.isDistributed()) {
MeshAccessor mesh_accessor(mesh);
auto & nodes_flags = mesh_accessor.getNodesFlags();
auto nb_old_nodes = nodes_flags.size();
nodes_flags.resize(nb_old_nodes + local_nb_new_nodes);
for (auto && data : zip(old_nodes, new_nodes)) {
UInt old_node, new_node;
std::tie(old_node, new_node) = data;
nodes_flags(new_node) = nodes_flags(old_node);
}
model.updateCohesiveSynchronizers();
nb_new_nodes = global_ids_updater.updateGlobalIDs(new_nodes.size());
}
Vector<UInt> nb_new_stuff = {nb_new_nodes, elements_event.getList().size()};
const auto & comm = mesh.getCommunicator();
comm.allReduce(nb_new_stuff, SynchronizerOperation::_sum);
if (nb_new_stuff(1) > 0) {
mesh.sendEvent(elements_event);
MeshUtils::resetFacetToDouble(mesh.getMeshFacets());
}
if (nb_new_stuff(0) > 0) {
mesh.sendEvent(nodes_event);
// mesh.sendEvent(global_ids_updater.getChangedNodeEvent());
}
return std::make_tuple(nb_new_stuff(0), nb_new_stuff(1));
}
private:
SolidMechanicsModelCohesive & model;
Mesh & mesh;
GlobalIdsUpdater global_ids_updater;
};
/* -------------------------------------------------------------------------- */
SolidMechanicsModelCohesive::SolidMechanicsModelCohesive(
Mesh & mesh, UInt dim, const ID & id, const MemoryID & memory_id)
: SolidMechanicsModel(mesh, dim, id, memory_id,
ModelType::_solid_mechanics_model_cohesive),
tangents("tangents", id), facet_stress("facet_stress", id),
facet_material("facet_material", id) {
AKANTU_DEBUG_IN();
registerFEEngineObject<MyFEEngineCohesiveType>("CohesiveFEEngine", mesh,
Model::spatial_dimension);
auto && tmp_material_selector =
std::make_shared<DefaultMaterialCohesiveSelector>(*this);
tmp_material_selector->setFallback(this->material_selector);
this->material_selector = tmp_material_selector;
#if defined(AKANTU_USE_IOHELPER)
this->mesh.registerDumper<DumperParaview>("cohesive elements", id);
this->mesh.addDumpMeshToDumper("cohesive elements", mesh,
Model::spatial_dimension, _not_ghost,
_ek_cohesive);
#endif
if (this->mesh.isDistributed()) {
/// create the distributed synchronizer for cohesive elements
this->cohesive_synchronizer = std::make_unique<ElementSynchronizer>(
mesh, "cohesive_distributed_synchronizer");
auto & synchronizer = mesh.getElementSynchronizer();
this->cohesive_synchronizer->split(synchronizer, [](auto && el) {
return Mesh::getKind(el.type) == _ek_cohesive;
});
this->registerSynchronizer(*cohesive_synchronizer,
SynchronizationTag::_material_id);
this->registerSynchronizer(*cohesive_synchronizer,
SynchronizationTag::_smm_stress);
this->registerSynchronizer(*cohesive_synchronizer,
SynchronizationTag::_smm_boundary);
}
this->inserter = std::make_unique<CohesiveElementInserter>(
this->mesh, id + ":cohesive_element_inserter");
registerFEEngineObject<MyFEEngineFacetType>(
"FacetsFEEngine", mesh.getMeshFacets(), Model::spatial_dimension - 1);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
SolidMechanicsModelCohesive::~SolidMechanicsModelCohesive() = default;
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::setTimeStep(Real time_step,
const ID & solver_id) {
SolidMechanicsModel::setTimeStep(time_step, solver_id);
#if defined(AKANTU_USE_IOHELPER)
this->mesh.getDumper("cohesive elements").setTimeStep(time_step);
#endif
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::initFullImpl(const ModelOptions & options) {
AKANTU_DEBUG_IN();
const auto & smmc_options =
aka::as_type<SolidMechanicsModelCohesiveOptions>(options);
this->is_extrinsic = smmc_options.is_extrinsic;
inserter->setIsExtrinsic(is_extrinsic);
if (mesh.isDistributed()) {
auto & mesh_facets = inserter->getMeshFacets();
auto & synchronizer =
aka::as_type<FacetSynchronizer>(mesh_facets.getElementSynchronizer());
// synchronizeGhostFacetsConnectivity();
/// create the facet synchronizer for extrinsic simulations
if (is_extrinsic) {
facet_stress_synchronizer = std::make_unique<ElementSynchronizer>(
synchronizer, id + ":facet_stress_synchronizer");
facet_stress_synchronizer->swapSendRecv();
this->registerSynchronizer(*facet_stress_synchronizer,
SynchronizationTag::_smmc_facets_stress);
}
}
MeshAccessor mesh_accessor(mesh);
mesh_accessor.registerGlobalDataUpdater(
std::make_unique<CohesiveMeshGlobalDataUpdater>(*this));
ParserSection section;
bool is_empty;
std::tie(section, is_empty) = this->getParserSection();
if (not is_empty) {
auto inserter_section =
section.getSubSections(ParserType::_cohesive_inserter);
if (inserter_section.begin() != inserter_section.end()) {
inserter->parseSection(*inserter_section.begin());
}
}
SolidMechanicsModel::initFullImpl(options);
AKANTU_DEBUG_OUT();
} // namespace akantu
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::initMaterials() {
AKANTU_DEBUG_IN();
// make sure the material are instantiated
if (not are_materials_instantiated)
instantiateMaterials();
/// find the first cohesive material
UInt cohesive_index = UInt(-1);
for (auto && material : enumerate(materials)) {
if (dynamic_cast<MaterialCohesive *>(std::get<1>(material).get())) {
cohesive_index = std::get<0>(material);
break;
}
}
if (cohesive_index == UInt(-1))
AKANTU_EXCEPTION("No cohesive materials in the material input file");
material_selector->setFallback(cohesive_index);
// set the facet information in the material in case of dynamic insertion
// to know what material to call for stress checks
const Mesh & mesh_facets = inserter->getMeshFacets();
facet_material.initialize(
mesh_facets, _spatial_dimension = spatial_dimension - 1,
_with_nb_element = true,
_default_value = material_selector->getFallbackValue());
for_each_element(
mesh_facets,
[&](auto && element) {
auto mat_index = (*material_selector)(element);
auto & mat = aka::as_type<MaterialCohesive>(*materials[mat_index]);
facet_material(element) = mat_index;
if (is_extrinsic) {
mat.addFacet(element);
}
},
_spatial_dimension = spatial_dimension - 1, _ghost_type = _not_ghost);
SolidMechanicsModel::initMaterials();
if (is_extrinsic) {
this->initAutomaticInsertion();
} else {
this->insertIntrinsicElements();
}
AKANTU_DEBUG_OUT();
} // namespace akantu
/* -------------------------------------------------------------------------- */
/**
* Initialize the model,basically it pre-compute the shapes, shapes derivatives
* and jacobian
*/
void SolidMechanicsModelCohesive::initModel() {
AKANTU_DEBUG_IN();
SolidMechanicsModel::initModel();
/// add cohesive type connectivity
ElementType type = _not_defined;
for (auto && type_ghost : ghost_types) {
for (const auto & tmp_type :
mesh.elementTypes(spatial_dimension, type_ghost)) {
const auto & connectivity = mesh.getConnectivity(tmp_type, type_ghost);
if (connectivity.size() == 0)
continue;
type = tmp_type;
auto type_facet = Mesh::getFacetType(type);
auto type_cohesive = FEEngine::getCohesiveElementType(type_facet);
mesh.addConnectivityType(type_cohesive, type_ghost);
}
}
AKANTU_DEBUG_ASSERT(type != _not_defined, "No elements in the mesh");
getFEEngine("CohesiveFEEngine").initShapeFunctions(_not_ghost);
getFEEngine("CohesiveFEEngine").initShapeFunctions(_ghost);
if (is_extrinsic) {
getFEEngine("FacetsFEEngine").initShapeFunctions(_not_ghost);
getFEEngine("FacetsFEEngine").initShapeFunctions(_ghost);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::insertIntrinsicElements() {
AKANTU_DEBUG_IN();
inserter->insertIntrinsicElements();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::initAutomaticInsertion() {
AKANTU_DEBUG_IN();
this->inserter->limitCheckFacets();
this->updateFacetStressSynchronizer();
this->resizeFacetStress();
/// compute normals on facets
this->computeNormals();
this->initStressInterpolation();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::updateAutomaticInsertion() {
AKANTU_DEBUG_IN();
this->inserter->limitCheckFacets();
this->updateFacetStressSynchronizer();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::initStressInterpolation() {
Mesh & mesh_facets = inserter->getMeshFacets();
/// compute quadrature points coordinates on facets
Array<Real> & position = mesh.getNodes();
ElementTypeMapArray<Real> quad_facets("quad_facets", id);
quad_facets.initialize(mesh_facets, _nb_component = Model::spatial_dimension,
_spatial_dimension = Model::spatial_dimension - 1);
// mesh_facets.initElementTypeMapArray(quad_facets, Model::spatial_dimension,
// Model::spatial_dimension - 1);
getFEEngine("FacetsFEEngine")
.interpolateOnIntegrationPoints(position, quad_facets);
/// compute elements quadrature point positions and build
/// element-facet quadrature points data structure
ElementTypeMapArray<Real> elements_quad_facets("elements_quad_facets", id);
elements_quad_facets.initialize(
mesh, _nb_component = Model::spatial_dimension,
_spatial_dimension = Model::spatial_dimension);
// mesh.initElementTypeMapArray(elements_quad_facets,
// Model::spatial_dimension,
// Model::spatial_dimension);
for (auto elem_gt : ghost_types) {
for (auto & type : mesh.elementTypes(Model::spatial_dimension, elem_gt)) {
UInt nb_element = mesh.getNbElement(type, elem_gt);
if (nb_element == 0)
continue;
/// compute elements' quadrature points and list of facet
/// quadrature points positions by element
const auto & facet_to_element =
mesh_facets.getSubelementToElement(type, elem_gt);
auto & el_q_facet = elements_quad_facets(type, elem_gt);
auto facet_type = Mesh::getFacetType(type);
auto nb_quad_per_facet =
getFEEngine("FacetsFEEngine").getNbIntegrationPoints(facet_type);
auto nb_facet_per_elem = facet_to_element.getNbComponent();
// small hack in the loop to skip boundary elements, they are silently
// initialized to NaN to see if this causes problems
el_q_facet.resize(nb_element * nb_facet_per_elem * nb_quad_per_facet,
std::numeric_limits<Real>::quiet_NaN());
for (auto && data :
zip(make_view(facet_to_element),
make_view(el_q_facet, spatial_dimension, nb_quad_per_facet))) {
const auto & global_facet = std::get<0>(data);
auto & el_q = std::get<1>(data);
if (global_facet == ElementNull)
continue;
Matrix<Real> quad_f =
make_view(quad_facets(global_facet.type, global_facet.ghost_type),
spatial_dimension, nb_quad_per_facet)
.begin()[global_facet.element];
el_q = quad_f;
}
}
}
/// loop over non cohesive materials
for (auto && material : materials) {
if (dynamic_cast<MaterialCohesive *>(material.get()))
continue;
/// initialize the interpolation function
material->initElementalFieldInterpolation(elements_quad_facets);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::assembleInternalForces() {
AKANTU_DEBUG_IN();
// f_int += f_int_cohe
for (auto & material : this->materials) {
try {
auto & mat = aka::as_type<MaterialCohesive>(*material);
mat.computeTraction(_not_ghost);
} catch (std::bad_cast & bce) {
}
}
SolidMechanicsModel::assembleInternalForces();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::computeNormals() {
AKANTU_DEBUG_IN();
Mesh & mesh_facets = this->inserter->getMeshFacets();
this->getFEEngine("FacetsFEEngine")
.computeNormalsOnIntegrationPoints(_not_ghost);
/**
* @todo store tangents while computing normals instead of
* recomputing them as follows:
*/
/* ------------------------------------------------------------------------ */
UInt tangent_components =
Model::spatial_dimension * (Model::spatial_dimension - 1);
tangents.initialize(mesh_facets, _nb_component = tangent_components,
_spatial_dimension = Model::spatial_dimension - 1);
for (auto facet_type :
mesh_facets.elementTypes(Model::spatial_dimension - 1)) {
const Array<Real> & normals =
this->getFEEngine("FacetsFEEngine")
.getNormalsOnIntegrationPoints(facet_type);
Array<Real> & tangents = this->tangents(facet_type);
Math::compute_tangents(normals, tangents);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::interpolateStress() {
ElementTypeMapArray<Real> by_elem_result("temporary_stress_by_facets", id);
for (auto & material : materials) {
auto * mat = dynamic_cast<MaterialCohesive *>(material.get());
if (mat == nullptr)
/// interpolate stress on facet quadrature points positions
material->interpolateStressOnFacets(facet_stress, by_elem_result);
}
this->synchronize(SynchronizationTag::_smmc_facets_stress);
}
/* -------------------------------------------------------------------------- */
UInt SolidMechanicsModelCohesive::checkCohesiveStress() {
AKANTU_DEBUG_IN();
if (not is_extrinsic) {
AKANTU_EXCEPTION(
"This function can only be used for extrinsic cohesive elements");
}
interpolateStress();
for (auto & mat : materials) {
auto * mat_cohesive = dynamic_cast<MaterialCohesive *>(mat.get());
if (mat_cohesive) {
/// check which not ghost cohesive elements are to be created
mat_cohesive->checkInsertion();
}
}
/// insert cohesive elements
UInt nb_new_elements = inserter->insertElements();
AKANTU_DEBUG_OUT();
return nb_new_elements;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::onElementsAdded(
const Array<Element> & element_list, const NewElementsEvent & event) {
AKANTU_DEBUG_IN();
SolidMechanicsModel::onElementsAdded(element_list, event);
if (is_extrinsic)
resizeFacetStress();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::onNodesAdded(const Array<Idx> & new_nodes,
const NewNodesEvent & event) {
AKANTU_DEBUG_IN();
SolidMechanicsModel::onNodesAdded(new_nodes, event);
const CohesiveNewNodesEvent * cohesive_event;
if ((cohesive_event = dynamic_cast<const CohesiveNewNodesEvent *>(&event)) ==
nullptr)
return;
const auto & old_nodes = cohesive_event->getOldNodesList();
auto copy = [this, &new_nodes, &old_nodes](auto & arr) {
UInt new_node, old_node;
auto view = make_view(arr, spatial_dimension);
auto begin = view.begin();
for (auto && pair : zip(new_nodes, old_nodes)) {
std::tie(new_node, old_node) = pair;
auto old_ = begin + old_node;
auto new_ = begin + new_node;
*new_ = *old_;
}
};
copy(*displacement);
copy(*blocked_dofs);
if (velocity)
copy(*velocity);
if (acceleration)
copy(*acceleration);
if (current_position)
copy(*current_position);
if (previous_displacement)
copy(*previous_displacement);
if (displacement_increment)
copy(*displacement_increment);
copy(getDOFManager().getSolution("displacement"));
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::afterSolveStep(bool converged) {
AKANTU_DEBUG_IN();
/*
* This is required because the Cauchy stress is the stress measure that
* is used to check the insertion of cohesive elements
*/
if (converged) {
for (auto & mat : materials) {
if (mat->isFiniteDeformation())
mat->computeAllCauchyStresses(_not_ghost);
}
}
SolidMechanicsModel::afterSolveStep(converged);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::printself(std::ostream & stream,
int indent) const {
std::string space(indent, AKANTU_INDENT);
stream << space << "SolidMechanicsModelCohesive ["
<< "\n";
SolidMechanicsModel::printself(stream, indent + 2);
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::resizeFacetStress() {
AKANTU_DEBUG_IN();
this->facet_stress.initialize(getFEEngine("FacetsFEEngine"),
_nb_component =
2 * spatial_dimension * spatial_dimension,
_spatial_dimension = spatial_dimension - 1);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::addDumpGroupFieldToDumper(
const std::string & dumper_name, const std::string & field_id,
const std::string & group_name, const ElementKind & element_kind,
bool padding_flag) {
AKANTU_DEBUG_IN();
UInt spatial_dimension = Model::spatial_dimension;
ElementKind _element_kind = element_kind;
if (dumper_name == "cohesive elements") {
_element_kind = _ek_cohesive;
} else if (dumper_name == "facets") {
spatial_dimension = Model::spatial_dimension - 1;
}
SolidMechanicsModel::addDumpGroupFieldToDumper(dumper_name, field_id,
group_name, spatial_dimension,
_element_kind, padding_flag);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModelCohesive::onDump() {
this->flattenAllRegisteredInternals(_ek_cohesive);
SolidMechanicsModel::onDump();
}
/* -------------------------------------------------------------------------- */
} // namespace akantu

Event Timeline