Page MenuHomec4science

test_build_neighborhood_parallel.cc
No OneTemporary

File Metadata

Created
Sat, Apr 27, 14:33

test_build_neighborhood_parallel.cc

/**
* @file test_build_neighborhood_parallel.cc
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Sat Sep 26 2015
* @date last modification: Wed Jan 30 2019
*
* @brief test in parallel for the class NonLocalNeighborhood
*
*
* @section LICENSE
*
* Copyright (©) 2015-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "dumper_iohelper_paraview.hh"
#include "non_local_neighborhood_base.hh"
#include "solid_mechanics_model.hh"
#include "test_material.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
akantu::initialize("material_parallel_test.dat", argc, argv);
const auto & comm = Communicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
// some configuration variables
const UInt spatial_dimension = 2;
// mesh creation and read
Mesh mesh(spatial_dimension);
if (prank == 0) {
mesh.read("parallel_test.msh");
}
mesh.distribute();
/// model creation
SolidMechanicsModel model(mesh);
/// dump the ghost elements before the non-local part is intialized
DumperParaview dumper_ghost("ghost_elements");
dumper_ghost.registerMesh(mesh, spatial_dimension, _ghost);
if (psize > 1) {
dumper_ghost.dump();
}
/// creation of material selector
auto && mat_selector =
std::make_shared<MeshDataMaterialSelector<std::string>>("physical_names",
model);
model.setMaterialSelector(mat_selector);
/// dump material index in paraview
model.addDumpField("partitions");
model.dump();
/// model initialization changed to use our material
model.initFull();
/// dump the ghost elements after ghosts for non-local have been added
if (psize > 1)
dumper_ghost.dump();
model.addDumpField("grad_u");
model.addDumpField("grad_u non local");
model.addDumpField("material_index");
/// apply constant strain field everywhere in the plate
Matrix<Real> applied_strain(spatial_dimension, spatial_dimension);
applied_strain.zero();
for (UInt i = 0; i < spatial_dimension; ++i)
applied_strain(i, i) = 2.;
ElementType element_type = _triangle_3;
GhostType ghost_type = _not_ghost;
/// apply constant grad_u field in all elements
for (UInt m = 0; m < model.getNbMaterials(); ++m) {
auto & mat = model.getMaterial(m);
auto & grad_u = const_cast<Array<Real> &>(
mat.getInternal<Real>("grad_u")(element_type, ghost_type));
auto grad_u_it = grad_u.begin(spatial_dimension, spatial_dimension);
auto grad_u_end = grad_u.end(spatial_dimension, spatial_dimension);
for (; grad_u_it != grad_u_end; ++grad_u_it)
(*grad_u_it) = -1. * applied_strain;
}
/// double the strain in the center: find the closed gauss point to the center
/// compute the quadrature points
ElementTypeMapReal quad_coords("quad_coords");
quad_coords.initialize(mesh, _nb_component = spatial_dimension,
_spatial_dimension = spatial_dimension,
_with_nb_element = true);
model.getFEEngine().computeIntegrationPointsCoordinates(quad_coords);
Vector<Real> center(spatial_dimension, 0.);
Real min_distance = 2;
IntegrationPoint q_min;
for (auto type :
mesh.elementTypes(spatial_dimension, _not_ghost, _ek_regular)) {
UInt nb_elements = mesh.getNbElement(type, _not_ghost);
UInt nb_quads = model.getFEEngine().getNbIntegrationPoints(type);
Array<Real> & coords = quad_coords(type, _not_ghost);
auto coord_it = coords.begin(spatial_dimension);
for (UInt e = 0; e < nb_elements; ++e) {
for (UInt q = 0; q < nb_quads; ++q, ++coord_it) {
Real dist = center.distance(*coord_it);
if (dist < min_distance) {
min_distance = dist;
q_min.element = e;
q_min.num_point = q;
q_min.global_num = nb_elements * nb_quads + q;
q_min.type = type;
}
}
}
}
Real global_min = min_distance;
comm.allReduce(global_min, SynchronizerOperation::_min);
if (Math::are_float_equal(global_min, min_distance)) {
UInt mat_index = model.getMaterialByElement(q_min.type, _not_ghost)
.begin()[q_min.element];
Material & mat = model.getMaterial(mat_index);
UInt nb_quads = model.getFEEngine().getNbIntegrationPoints(q_min.type);
UInt local_el_index =
model.getMaterialLocalNumbering(q_min.type, _not_ghost)
.begin()[q_min.element];
UInt local_num = (local_el_index * nb_quads) + q_min.num_point;
Array<Real> & grad_u = const_cast<Array<Real> &>(
mat.getInternal<Real>("grad_u")(q_min.type, _not_ghost));
Array<Real>::iterator<Matrix<Real>> grad_u_it =
grad_u.begin(spatial_dimension, spatial_dimension);
grad_u_it += local_num;
Matrix<Real> & g_u = *grad_u_it;
g_u += applied_strain;
}
/// compute the non-local strains
model.assembleInternalForces();
model.dump();
/// damage the element with higher grad_u completely, so that it is
/// not taken into account for the averaging
if (Math::are_float_equal(global_min, min_distance)) {
UInt mat_index = model.getMaterialByElement(q_min.type, _not_ghost)
.begin()[q_min.element];
Material & mat = model.getMaterial(mat_index);
UInt nb_quads = model.getFEEngine().getNbIntegrationPoints(q_min.type);
UInt local_el_index =
model.getMaterialLocalNumbering(q_min.type, _not_ghost)
.begin()[q_min.element];
UInt local_num = (local_el_index * nb_quads) + q_min.num_point;
Array<Real> & damage = const_cast<Array<Real> &>(
mat.getInternal<Real>("damage")(q_min.type, _not_ghost));
Real * dam_ptr = damage.storage();
dam_ptr += local_num;
*dam_ptr = 0.9;
}
/// compute the non-local strains
model.assembleInternalForces();
model.dump();
finalize();
return EXIT_SUCCESS;
}

Event Timeline