Page MenuHomec4science

test_model_solver.cc
No OneTemporary

File Metadata

Created
Tue, May 7, 13:27

test_model_solver.cc

/**
* @file test_dof_manager_default.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date Wed Feb 24 12:28:44 2016
*
* @brief Test default dof manager
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "dof_manager.hh"
#include "mesh.hh"
#include "mesh_accessor.hh"
#include "model_solver.hh"
#include "sparse_matrix.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
class MyModel;
static void genMesh(Mesh & mesh, UInt nb_nodes);
static void printResults(MyModel & model);
/**
* =\o-----o-----o-> F
* | |
* |---- L ----|
*/
class MyModel : public ModelSolver {
public:
MyModel(Real F, Mesh & mesh)
: ModelSolver(mesh, "model_solver", 0),
dispacement(mesh.getNbNodes(), 1, "disp"),
blocked(mesh.getNbNodes(), 1), forces(mesh.getNbNodes(), 1), mesh(mesh),
nb_dofs(mesh.getNbNodes()), EA(1.) {
this->initDOFManager("mumps");
this->getDOFManager().registerDOFs("disp", dispacement, _dst_nodal);
this->getDOFManager().registerBlockedDOFs("disp", blocked);
this->getDOFManager().getNewMatrix("K", _symmetric);
this->getDOFManager().getNewMatrix("J", "K");
dispacement.set(0.);
forces.set(0.);
blocked.set(false);
forces(nb_dofs - 1, _x) = F;
blocked(0, _x) = true;
}
void assembleJacobian() {
SparseMatrix & K = this->getDOFManager().getMatrix("K");
K.clear();
Matrix<Real> k(2, 2);
k(0, 0) = k(1, 1) = 1;
k(0, 1) = k(1, 0) = -1;
Array<Real> k_all_el(this->nb_dofs - 1, 4);
Array<Real>::matrix_iterator k_it = k_all_el.begin(2, 2);
Array<UInt>::const_vector_iterator cit =
this->mesh.getConnectivity(_segment_2).begin(2);
Array<UInt>::const_vector_iterator cend =
this->mesh.getConnectivity(_segment_2).end(2);
for (; cit != cend; ++cit, ++k_it) {
const Vector<UInt> & conn = *cit;
UInt n1 = conn(0);
UInt n2 = conn(1);
Real p1 = this->mesh.getNodes()(n1, _x);
Real p2 = this->mesh.getNodes()(n2, _x);
Real L = std::abs(p2 - p1);
Matrix<Real> & k_el = *k_it;
k_el = k;
k_el *= EA / L;
}
this->getDOFManager().assembleElementalMatricesToMatrix(
"K", "disp", k_all_el, _segment_2);
}
void assembleResidual() {
this->getDOFManager().assembleToResidual("disp", forces);
Array<Real> forces_internal_el(this->nb_dofs - 1, 2);
Array<Real>::vector_iterator f_it = forces_internal_el.begin(2);
Array<UInt>::const_vector_iterator cit =
this->mesh.getConnectivity(_segment_2).begin(2);
Array<UInt>::const_vector_iterator cend =
this->mesh.getConnectivity(_segment_2).end(2);
for (; cit != cend; ++cit, ++f_it) {
const Vector<UInt> & conn = *cit;
UInt n1 = conn(0);
UInt n2 = conn(1);
Real p1 = this->mesh.getNodes()(n1, _x);
Real p2 = this->mesh.getNodes()(n2, _x);
Real L = std::abs(p2 - p1);
Real u1 = this->dispacement(n1, _x);
Real u2 = this->dispacement(n2, _x);
Real f_n = EA / L * (u1 - u2);
Vector<Real> & f = *f_it;
f(0) = -f_n;
f(1) = f_n;
}
this->getDOFManager().assembleElementalArrayToResidual(
"disp", forces_internal_el, _segment_2, _not_ghost, -1.);
}
void predictor() {}
void corrector() {}
Array<Real> dispacement;
Array<bool> blocked;
Array<Real> forces;
private:
Mesh & mesh;
UInt nb_dofs;
Real EA;
};
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
initialize(argc, argv);
std::cout << std::setprecision(7);
UInt nb_nodes = 11;
Mesh mesh(1);
genMesh(mesh, nb_nodes);
MyModel model(10., mesh);
model.getNewSolver("static", _tsst_static, _nls_linear);
model.setIntegrationScheme("static", "disp", _ist_pseudo_time);
model.solveStep();
printResults(model);
finalize();
return EXIT_SUCCESS;
}
/* -------------------------------------------------------------------------- */
void genMesh(Mesh & mesh, UInt nb_nodes) {
MeshAccessor mesh_accessor(mesh);
Array<Real> & nodes = mesh_accessor.getNodes();
Array<UInt> & conn = mesh_accessor.getConnectivity(_segment_2);
nodes.resize(nb_nodes);
for (UInt n = 0; n < nb_nodes; ++n) {
nodes(n, _x) = n * (1. / (nb_nodes - 1));
}
conn.resize(nb_nodes - 1);
for (UInt n = 0; n < nb_nodes - 1; ++n) {
conn(n, 0) = n;
conn(n, 1) = n + 1;
}
}
/* -------------------------------------------------------------------------- */
void printResults(MyModel & model) {
Array<Real>::const_scalar_iterator disp_it = model.dispacement.begin();
Array<Real>::const_scalar_iterator force_it = model.forces.begin();
Array<bool>::const_scalar_iterator blocked_it = model.blocked.begin();
std::ofstream output("disp.csv");
output << "node"
<< ", " << std::setw(8) << "disp"
<< ", " << std::setw(8) << "force"
<< ", " << std::setw(8) << "blocked" << std::endl;
UInt node = 0;
for (; disp_it != model.dispacement.end();
++disp_it, ++force_it, ++blocked_it, ++node) {
output << node << ", "
<< std::setw(8) << *disp_it << ", "
<< std::setw(8) << *force_it << ", "
<< std::setw(8) << *blocked_it
<< std::endl;
}
}

Event Timeline