Page MenuHomec4science

test_model_solver_dynamic.cc
No OneTemporary

File Metadata

Created
Thu, May 9, 10:31

test_model_solver_dynamic.cc

/**
* @file test_model_solver_dynamic.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Wed Apr 13 2016
* @date last modification: Tue Feb 20 2018
*
* @brief Test default dof manager
*
* @section LICENSE
*
* Copyright (©) 2016-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "communicator.hh"
#include "data_accessor.hh"
#include "dof_manager.hh"
#include "dof_manager_default.hh"
#include "element_synchronizer.hh"
#include "mesh.hh"
#include "mesh_accessor.hh"
#include "model_solver.hh"
#include "non_linear_solver.hh"
#include "sparse_matrix.hh"
#include "synchronizer_registry.hh"
/* -------------------------------------------------------------------------- */
#include "dumpable_inline_impl.hh"
#include "dumper_element_partition.hh"
#include "dumper_iohelper_paraview.hh"
/* -------------------------------------------------------------------------- */
#include "test_model_solver_my_model.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
/* -------------------------------------------------------------------------- */
#ifndef EXPLICIT
#define EXPLICIT true
#endif
using namespace akantu;
static void genMesh(Mesh & mesh, UInt nb_nodes);
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
initialize(argc, argv);
UInt prank = Communicator::getStaticCommunicator().whoAmI();
UInt global_nb_nodes = 201;
UInt max_steps = 400;
Real time_step = 0.001;
Mesh mesh(1);
Real F = -9.81;
bool _explicit = EXPLICIT;
const Real pulse_width = 0.2;
const Real A = 0.01;
if (prank == 0)
genMesh(mesh, global_nb_nodes);
mesh.distribute();
mesh.makePeriodic(_x);
MyModel model(F, mesh, _explicit);
model.forces.clear();
model.blocked.clear();
for (auto && n : arange(mesh.getNbNodes())) {
Real x = mesh.getNodes()(n) - 0.2;
// Sinus * Gaussian
Real L = pulse_width;
Real k = 2 * M_PI / L;
//model.displacement(n) = A * sin(k * x) * exp(-(k * x) * (k * x) / (L * L));
model.displacement(n) = A * cos(k * x);
model.velocity(n) = k * A * sin(k * x);
}
if (!_explicit) {
model.getNewSolver("dynamic", _tsst_dynamic, _nls_newton_raphson);
model.setIntegrationScheme("dynamic", "disp", _ist_trapezoidal_rule_2,
IntegrationScheme::_displacement);
} else {
model.getNewSolver("dynamic", _tsst_dynamic_lumped, _nls_lumped);
model.setIntegrationScheme("dynamic", "disp", _ist_central_difference,
IntegrationScheme::_acceleration);
}
model.setTimeStep(time_step);
// #if EXPLICIT == true
// std::ofstream output("output_dynamic_explicit.csv");
// #else
// std::ofstream output("output_dynamic_implicit.csv");
// #endif
if (prank == 0) {
std::cout << std::scientific;
std::cout << std::setw(14) << "time"
<< "," << std::setw(14) << "wext"
<< "," << std::setw(14) << "epot"
<< "," << std::setw(14) << "ekin"
<< "," << std::setw(14) << "total"
<< "," << std::setw(14) << "max_disp"
<< "," << std::setw(14) << "min_disp" << std::endl;
}
Real wext = 0.;
model.getDOFManager().clearResidual();
model.assembleResidual();
Real epot = 0; // model.getPotentialEnergy();
Real ekin = 0; // model.getKineticEnergy();
Real einit = ekin + epot;
Real etot = ekin + epot - wext - einit;
Real max_disp = 0., min_disp = 0.;
for (auto && disp : model.displacement) {
max_disp = std::max(max_disp, disp);
min_disp = std::min(min_disp, disp);
}
if (prank == 0) {
std::cout << std::setw(14) << 0. << "," << std::setw(14) << wext << ","
<< std::setw(14) << epot << "," << std::setw(14) << ekin << ","
<< std::setw(14) << etot << "," << std::setw(14) << max_disp
<< "," << std::setw(14) << min_disp << std::endl;
}
#if EXPLICIT == false
NonLinearSolver & solver =
model.getDOFManager().getNonLinearSolver("dynamic");
solver.set("max_iterations", 20);
#endif
auto * dumper = new DumperParaview("dynamic", "./paraview");
mesh.registerExternalDumper(*dumper, "dynamic", true);
mesh.addDumpMesh(mesh);
mesh.addDumpFieldExternalToDumper("dynamic", "displacement",
model.displacement);
mesh.addDumpFieldExternalToDumper("dynamic", "velocity", model.velocity);
mesh.addDumpFieldExternalToDumper("dynamic", "forces", model.forces);
mesh.addDumpFieldExternalToDumper("dynamic", "acceleration",
model.acceleration);
mesh.dump();
for (UInt i = 1; i < max_steps + 1; ++i) {
model.solveStep("dynamic");
mesh.dump();
#if EXPLICIT == false
// int nb_iter = solver.get("nb_iterations");
// Real error = solver.get("error");
// bool converged = solver.get("converged");
// if (prank == 0)
// std::cerr << error << " " << nb_iter << " -> " << converged << std::endl;
#endif
epot = model.getPotentialEnergy();
ekin = model.getKineticEnergy();
wext += model.getExternalWorkIncrement();
etot = ekin + epot - wext - einit;
Real max_disp = 0., min_disp = 0.;
for (auto && disp : model.displacement) {
max_disp = std::max(max_disp, disp);
min_disp = std::min(min_disp, disp);
}
if (prank == 0) {
std::cout << std::setw(14) << time_step * i << "," << std::setw(14)
<< wext << "," << std::setw(14) << epot << "," << std::setw(14)
<< ekin << "," << std::setw(14) << etot << "," << std::setw(14)
<< max_disp << "," << std::setw(14) << min_disp << std::endl;
}
// if (std::abs(etot) > 1e-1) {
// AKANTU_ERROR("The total energy of the system is not conserved!");
//}
}
// output.close();
finalize();
return EXIT_SUCCESS;
}
/* -------------------------------------------------------------------------- */
void genMesh(Mesh & mesh, UInt nb_nodes) {
MeshAccessor mesh_accessor(mesh);
Array<Real> & nodes = mesh_accessor.getNodes();
Array<UInt> & conn = mesh_accessor.getConnectivity(_segment_2);
nodes.resize(nb_nodes);
for (UInt n = 0; n < nb_nodes; ++n) {
nodes(n, _x) = n * (1. / (nb_nodes - 1));
}
conn.resize(nb_nodes - 1);
for (UInt n = 0; n < nb_nodes - 1; ++n) {
conn(n, 0) = n;
conn(n, 1) = n + 1;
}
mesh_accessor.makeReady();
}

Event Timeline