Page MenuHomec4science

test_multi_material.cc
No OneTemporary

File Metadata

Created
Wed, May 1, 09:50

test_multi_material.cc

/**
* @file tets_phase_field_2d.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Oct 1 2018
*
* @brief test of the class PhaseFieldModel on the 2d square
*
* @section LICENSE
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "non_linear_solver.hh"
#include "coupler_solid_phasefield.hh"
#include "solid_mechanics_model.hh"
#include "phase_field_model.hh"
#include "material.hh"
#include "material_phasefield.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
#include <fstream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
const UInt spatial_dimension = 2;
/* -------------------------------------------------------------------------- */
void applyDisplacement(SolidMechanicsModel &, Real &);
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[]) {
initialize("material_multiple.dat", argc, argv);
Mesh mesh(spatial_dimension);
mesh.read("test_two_element.msh");
CouplerSolidPhaseField coupler(mesh);
auto & model = coupler.getSolidMechanicsModel();
auto & phase = coupler.getPhaseFieldModel();
auto && mat_selector = std::make_shared<MeshDataMaterialSelector<std::string>>(
"physical_names", model);
model.setMaterialSelector(mat_selector);
model.initFull(_analysis_method = _explicit_lumped_mass);
Real time_step = model.getStableTimeStep();
time_step *= 0.8;
model.setTimeStep(time_step);
auto && selector = std::make_shared<MeshDataPhaseFieldSelector<std::string>>(
"physical_names", phase);
phase.setPhaseFieldSelector(selector);
phase.initFull(_analysis_method = _static);
model.setBaseName("multi_material");
model.addDumpField("stress");
model.addDumpField("grad_u");
model.addDumpField("damage");
model.addDumpFieldVector("displacement");
model.addDumpField("blocked_dofs");
model.dump();
UInt nbSteps = 1000;
Real increment = 1e-4;
for (UInt s = 0; s < nbSteps; ++s) {
Real axial_strain = increment * s;
applyDisplacement(model, axial_strain);
coupler.solve();
model.dump();
}
finalize();
return EXIT_SUCCESS;
}
/* -------------------------------------------------------------------------- */
void applyDisplacement(SolidMechanicsModel & model, Real & increment) {
auto & displacement = model.getDisplacement();
auto & positions = model.getMesh().getNodes();
auto & blocked_dofs = model.getBlockedDOFs();
for (UInt n = 0; n < model.getMesh().getNbNodes(); ++n) {
if (positions(n, 1) == -1) {
displacement(n, 1) = 0;
blocked_dofs(n, 1) = true;
displacement(n, 0) = 0;
blocked_dofs(n ,0) = true;
}
else if (positions(n, 1) == 1) {
displacement(n, 0) = 0;
displacement(n, 1) = increment;
blocked_dofs(n, 0) = true;
blocked_dofs(n ,1) = true;
}
else {
displacement(n, 0) = 0;
blocked_dofs(n, 0) = true;
}
}
}

Event Timeline