Page MenuHomec4science

test_cohesive_extrinsic_quadrangle.cc
No OneTemporary

File Metadata

Created
Mon, Jun 3, 23:45

test_cohesive_extrinsic_quadrangle.cc

/**
* @file test_cohesive_extrinsic_quadrangle.cc
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date Wed Oct 03 10:20:53 2012
*
* @brief Test for extrinsic cohesive elements and quadrangles
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <limits>
#include <fstream>
#include <iostream>
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_io_msh.hh"
#include "mesh_utils.hh"
#include "solid_mechanics_model_cohesive.hh"
#include "material.hh"
#if defined(AKANTU_USE_IOHELPER)
# include "io_helper.hh"
#endif
/* -------------------------------------------------------------------------- */
using namespace akantu;
int main(int argc, char *argv[]) {
initialize(argc, argv);
debug::setDebugLevel(dblWarning);
const UInt spatial_dimension = 2;
const UInt max_steps = 1000;
const ElementType type = _quadrangle_8;
Mesh mesh(spatial_dimension);
MeshIOMSH mesh_io;
mesh_io.read("quadrangle.msh", mesh);
SolidMechanicsModelCohesive model(mesh);
/// model initialization
model.initFull("material.dat");
model.initExtrinsic();
Real time_step = model.getStableTimeStep()*0.05;
model.setTimeStep(time_step);
// std::cout << "Time step: " << time_step << std::endl;
model.assembleMassLumped();
/* ------------------------------------------------------------------------ */
/* Facet part */
/* ------------------------------------------------------------------------ */
// std::cout << mesh << std::endl;
const Mesh & mesh_facets = model.getMeshFacets();
const ElementType type_facet = mesh.getFacetElementType(type);
UInt nb_facet = mesh_facets.getNbElement(type_facet);
const Vector<Real> & position = mesh.getNodes();
// const Vector<UInt> & connectivity = mesh_facets.getConnectivity(type_facet);
Vector<Real> & sigma_lim = model.getSigmaLimit();
Vector<bool> & facet_check = model.getFacetsCheck();
Real * bary_facet = new Real[spatial_dimension];
for (UInt f = 0; f < nb_facet; ++f) {
mesh_facets.getBarycenter(f, type_facet, bary_facet);
if (bary_facet[1] < 0.05 && bary_facet[1] > -0.05) {
sigma_lim(f) = 100;
facet_check(f) = true;
std::cout << f << std::endl;
}
else {
sigma_lim(f) = 1e10;
facet_check(f) = false;
}
}
delete[] bary_facet;
// std::cout << mesh << std::endl;
/* ------------------------------------------------------------------------ */
/* End of facet part */
/* ------------------------------------------------------------------------ */
Vector<Real> & velocity = model.getVelocity();
Vector<bool> & boundary = model.getBoundary();
Vector<Real> & displacement = model.getDisplacement();
// const Vector<Real> & residual = model.getResidual();
UInt nb_nodes = mesh.getNbNodes();
/// boundary conditions
for (UInt n = 0; n < nb_nodes; ++n) {
if (position(n, 1) > 0.99 || position(n, 1) < -0.99)
boundary(n, 1) = true;
if (position(n, 0) > 0.99 || position(n, 0) < -0.99)
boundary(n, 0) = true;
}
model.updateResidual();
// iohelper::ElemType paraview_type = iohelper::QUAD2;
// UInt nb_element = mesh.getNbElement(type);
// /// initialize the paraview output
// iohelper::DumperParaview dumper;
// dumper.SetMode(iohelper::TEXT);
// dumper.SetPoints(mesh.getNodes().values,
// spatial_dimension, mesh.getNbNodes(), "explicit");
// dumper.SetConnectivity((int *)mesh.getConnectivity(type).values,
// paraview_type, nb_element, iohelper::C_MODE);
// dumper.AddNodeDataField(model.getDisplacement().values,
// spatial_dimension, "displacements");
// dumper.AddNodeDataField(model.getVelocity().values,
// spatial_dimension, "velocity");
// dumper.AddNodeDataField(model.getAcceleration().values,
// spatial_dimension, "acceleration");
// dumper.AddNodeDataField(model.getResidual().values,
// spatial_dimension, "forces");
// dumper.AddElemDataField(model.getMaterial(0).getStrain(type).values,
// spatial_dimension*spatial_dimension, "strain");
// dumper.AddElemDataField(model.getMaterial(0).getStress(type).values,
// spatial_dimension*spatial_dimension, "stress");
// dumper.SetEmbeddedValue("displacements", 1);
// dumper.SetEmbeddedValue("forces", 1);
// dumper.SetPrefix("paraview/");
// dumper.Init();
// dumper.Dump();
/// initial conditions
Real loading_rate = 0.2;
Real disp_update = loading_rate * time_step;
for (UInt n = 0; n < nb_nodes; ++n) {
velocity(n, 1) = loading_rate * position(n, 1);
}
// std::ofstream edis("edis.txt");
// std::ofstream erev("erev.txt");
// Vector<Real> & residual = model.getResidual();
// const Vector<Real> & stress = model.getMaterial(0).getStress(type);
/// Main loop
for (UInt s = 1; s <= max_steps; ++s) {
/// update displacement on extreme nodes
for (UInt n = 0; n < nb_nodes; ++n) {
if (position(n, 1) > 0.99 || position(n, 1) < -0.99)
displacement(n, 1) += disp_update * position(n, 1);
}
model.checkCohesiveStress();
model.explicitPred();
model.updateResidual();
model.updateAcceleration();
model.explicitCorr();
if(s % 1 == 0) {
// dumper.SetPoints(mesh.getNodes().values,
// spatial_dimension, mesh.getNbNodes(), "explicit");
// dumper.SetConnectivity((int *)mesh.getConnectivity(type).values,
// paraview_type, nb_element, iohelper::C_MODE);
// dumper.AddNodeDataField(model.getDisplacement().values,
// spatial_dimension, "displacements");
// dumper.AddNodeDataField(model.getVelocity().values,
// spatial_dimension, "velocity");
// dumper.AddNodeDataField(model.getAcceleration().values,
// spatial_dimension, "acceleration");
// dumper.AddNodeDataField(model.getResidual().values,
// spatial_dimension, "forces");
// dumper.AddElemDataField(model.getMaterial(0).getStrain(type).values,
// spatial_dimension*spatial_dimension, "strain");
// dumper.AddElemDataField(model.getMaterial(0).getStress(type).values,
// spatial_dimension*spatial_dimension, "stress");
// dumper.SetEmbeddedValue("displacements", 1);
// dumper.SetEmbeddedValue("forces", 1);
// dumper.SetPrefix("paraview/");
// dumper.Init();
// dumper.Dump();
std::cout << "passing step " << s << "/" << max_steps << std::endl;
}
// Real Ed = dynamic_cast<MaterialCohesive&> (model.getMaterial(1)).getDissipatedEnergy();
// Real Er = dynamic_cast<MaterialCohesive&> (model.getMaterial(1)).getReversibleEnergy();
// edis << s << " "
// << Ed << std::endl;
// erev << s << " "
// << Er << std::endl;
}
// edis.close();
// erev.close();
Real Ed = model.getEnergy("dissipated");
Real Edt = 200;
std::cout << Ed << " " << Edt << std::endl;
if (Ed < Edt * 0.99 || Ed > Edt * 1.01) {
std::cout << "The dissipated energy is incorrect" << std::endl;
return EXIT_FAILURE;
}
finalize();
std::cout << "OK: test_cohesive_extrinsic_quadrangle was passed!" << std::endl;
return EXIT_SUCCESS;
}

Event Timeline