Page MenuHomec4science

test_cohesive_intrinsic_quadrangle.cc
No OneTemporary

File Metadata

Created
Sat, Apr 27, 10:24

test_cohesive_intrinsic_quadrangle.cc

/**
* @file test_cohesive_intrinsic_quadrangle.cc
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue May 08 2012
* @date last modification: Mon Dec 18 2017
*
* @brief Intrinsic cohesive elements' test for quadrangles
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
#include <fstream>
#include <iostream>
#include <limits>
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
static void updateDisplacement(SolidMechanicsModelCohesive &, Array<UInt> &,
ElementType, Real);
int main(int argc, char * argv[]) {
initialize("material.dat", argc, argv);
const UInt spatial_dimension = 2;
const UInt max_steps = 350;
const ElementType type = _quadrangle_4;
Mesh mesh(spatial_dimension);
mesh.read("quadrangle.msh");
// debug::setDebugLevel(dblDump);
// std::cout << mesh << std::endl;
// debug::setDebugLevel(dblWarning);
SolidMechanicsModelCohesive model(mesh);
model.getElementInserter().setLimit(_x, -0.01, 0.01);
/// model initialization
model.initFull();
Real time_step = model.getStableTimeStep() * 0.8;
model.setTimeStep(time_step);
model.assembleMassLumped();
Array<bool> & boundary = model.getBlockedDOFs();
// const Array<Real> & residual = model.getResidual();
UInt nb_nodes = mesh.getNbNodes();
UInt nb_element = mesh.getNbElement(type);
/// boundary conditions
for (UInt dim = 0; dim < spatial_dimension; ++dim) {
for (UInt n = 0; n < nb_nodes; ++n) {
boundary(n, dim) = true;
}
}
model.assembleInternalForces();
model.setBaseName("intrinsic_quadrangle");
model.addDumpFieldVector("displacement");
model.addDumpField("velocity");
model.addDumpField("acceleration");
model.addDumpField("internal_force");
model.addDumpField("stress");
model.addDumpField("grad_u");
model.addDumpField("external_force");
model.setBaseNameToDumper("cohesive elements",
"cohesive_elements_quadrangle");
model.addDumpFieldVectorToDumper("cohesive elements", "displacement");
model.addDumpFieldToDumper("cohesive elements", "damage");
model.dump();
model.dump("cohesive elements");
/// update displacement
Array<UInt> elements;
Vector<Real> bary(spatial_dimension);
for (UInt el = 0; el < nb_element; ++el) {
mesh.getBarycenter({type, el, _not_ghost}, bary);
if (bary(_x) > 0.)
elements.push_back(el);
}
Real increment = 0.01;
updateDisplacement(model, elements, type, increment);
// for (UInt n = 0; n < nb_nodes; ++n) {
// if (position(n, 1) + displacement(n, 1) > 0) {
// if (position(n, 0) == 0) {
// displacement(n, 1) -= 0.25;
// }
// if (position(n, 0) == 1) {
// displacement(n, 1) += 0.25;
// }
// }
// }
// std::ofstream edis("edis.txt");
// std::ofstream erev("erev.txt");
/// Main loop
for (UInt s = 1; s <= max_steps; ++s) {
model.solveStep();
updateDisplacement(model, elements, type, increment);
if (s % 1 == 0) {
model.dump();
model.dump("cohesive elements");
std::cout << "passing step " << s << "/" << max_steps << std::endl;
}
// // update displacement
// for (UInt n = 0; n < nb_nodes; ++n) {
// if (position(n, 1) + displacement(n, 1) > 0) {
// displacement(n, 0) -= 0.01;
// }
// }
// Real Ed = dynamic_cast<MaterialCohesive&>
// (model.getMaterial(1)).getDissipatedEnergy();
// Real Er = dynamic_cast<MaterialCohesive&>
// (model.getMaterial(1)).getReversibleEnergy();
// edis << s << " "
// << Ed << std::endl;
// erev << s << " "
// << Er << std::endl;
}
// edis.close();
// erev.close();
Real Ed = model.getEnergy("dissipated");
Real Edt = 1;
std::cout << Ed << " " << Edt << std::endl;
if (Ed < Edt * 0.999 || Ed > Edt * 1.001) {
std::cout << "The dissipated energy is incorrect" << std::endl;
return EXIT_FAILURE;
}
finalize();
std::cout << "OK: test_cohesive_intrinsic_quadrangle was passed!"
<< std::endl;
return EXIT_SUCCESS;
}
static void updateDisplacement(SolidMechanicsModelCohesive & model,
Array<UInt> & elements, ElementType type,
Real increment) {
Mesh & mesh = model.getFEEngine().getMesh();
UInt nb_element = elements.size();
UInt nb_nodes = mesh.getNbNodes();
UInt nb_nodes_per_element = mesh.getNbNodesPerElement(type);
const Array<UInt> & connectivity = mesh.getConnectivity(type);
Array<Real> & displacement = model.getDisplacement();
Array<bool> update(nb_nodes);
update.zero();
for (UInt el = 0; el < nb_element; ++el) {
for (UInt n = 0; n < nb_nodes_per_element; ++n) {
UInt node = connectivity(elements(el), n);
if (!update(node)) {
displacement(node, 0) += increment;
// displacement(node, 1) += increment;
update(node) = true;
}
}
}
}

Event Timeline