Page MenuHomec4science

test_material_cohesive_fixture.hh
No OneTemporary

File Metadata

Created
Sat, May 4, 23:45

test_material_cohesive_fixture.hh

/**
* @file test_material_cohesive_fixture.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Wed Feb 21 2018
* @date last modification: Sun Dec 30 2018
*
* @brief Test the traction separations laws for cohesive elements
*
*
* @section LICENSE
*
* Copyright (©) 2016-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
/* -------------------------------------------------------------------------- */
#include "test_gtest_utils.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
#include <gtest/gtest.h>
/* -------------------------------------------------------------------------- */
using namespace akantu;
//#define debug_
/* -------------------------------------------------------------------------- */
template <template <UInt> class Mat, typename dim_>
class TestMaterialCohesiveFixture : public ::testing::Test {
public:
static constexpr UInt dim = dim_::value;
using Material = Mat<dim>;
void SetUp() override {
mesh = std::make_unique<Mesh>(dim);
model = std::make_unique<SolidMechanicsModelCohesive>(*mesh);
material = std::make_unique<Material>(*model);
material->SetUps();
openings = std::make_unique<Array<Real>>(0, dim);
tractions = std::make_unique<Array<Real>>(0, dim);
reset();
gen.seed(::testing::GTEST_FLAG(random_seed));
normal = getRandomNormal();
tangents = getRandomTangents();
}
void TearDown() override {
material.reset(nullptr);
model.reset(nullptr);
mesh.reset(nullptr);
openings.reset(nullptr);
tractions.reset(nullptr);
}
void reset() {
openings->resize(1);
tractions->resize(1);
openings->zero();
tractions->zero();
}
/* ------------------------------------------------------------------------ */
void addOpening(const Vector<Real> & direction, Real start, Real stop,
UInt nb_steps) {
for (auto s : arange(nb_steps)) {
auto opening =
direction * (start + (stop - start) / Real(nb_steps) * Real(s + 1));
openings->push_back(opening);
}
tractions->resize(openings->size());
}
/* ------------------------------------------------------------------------ */
Vector<Real> getRandomVector() {
std::uniform_real_distribution<Real> dis;
Vector<Real> vector(dim);
for (auto s : arange(dim))
vector(s) = dis(gen);
return vector;
}
Vector<Real> getRandomNormal() {
auto normal = getRandomVector();
normal.normalize();
#if defined(debug_)
normal.set(0.);
normal(0) = 1.;
#endif
return normal;
}
Matrix<Real> getRandomTangents() {
auto dim = normal.size();
Matrix<Real> tangent(dim, dim - 1);
if (dim == 2) {
Math::normal2(normal.storage(), tangent(0).storage());
}
if (dim == 3) {
auto v = getRandomVector();
tangent(0) = (v - v.dot(normal) * normal).normalize();
Math::normal3(normal.storage(), tangent(0).storage(),
tangent(1).storage());
}
#if defined(debug_)
if (dim == 2)
tangent(0) = Vector<Real>{0., 1};
if (dim == 3)
tangent = Matrix<Real>{{0., 0.}, {1., 0.}, {0., 1.}};
#endif
return tangent;
}
/* ------------------------------------------------------------------------ */
void output_csv() {
const ::testing::TestInfo * const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
std::ofstream cout(std::string(test_info->name()) + ".csv");
auto print_vect_name = [&](auto name) {
for (auto s : arange(dim)) {
if (s != 0) {
cout << ", ";
}
cout << name << "_" << s;
}
};
auto print_vect = [&](const auto & vect) {
cout << vect.dot(normal);
if (dim > 1)
cout << ", " << vect.dot(tangents(0));
if (dim > 2)
cout << ", " << vect.dot(tangents(1));
};
cout << "delta, ";
print_vect_name("opening");
cout << ", ";
print_vect_name("traction");
cout << std::endl;
for (auto && data : zip(make_view(*this->openings, this->dim),
make_view(*this->tractions, this->dim))) {
const auto & opening = std::get<0>(data);
auto & traction = std::get<1>(data);
cout << this->material->delta(opening, normal) << ", ";
print_vect(opening);
cout << ", ";
print_vect(traction);
cout << std::endl;
}
}
/* ------------------------------------------------------------------------ */
Real dissipated() {
Vector<Real> prev_opening(dim, 0.);
Vector<Real> prev_traction(dim, 0.);
Real etot = 0.;
Real erev = 0.;
for (auto && data : zip(make_view(*this->openings, this->dim),
make_view(*this->tractions, this->dim))) {
const auto & opening = std::get<0>(data);
const auto & traction = std::get<1>(data);
etot += (opening - prev_opening).dot(traction + prev_traction) / 2.;
erev = traction.dot(opening) / 2.;
prev_opening = opening;
prev_traction = traction;
}
return etot - erev;
}
/* ------------------------------------------------------------------------ */
void checkModeI(Real max_opening, Real expected_dissipated) {
this->material->insertion_stress_ = this->material->sigma_c_ * normal;
addOpening(normal, 0., max_opening, 100);
this->material->computeTractions(*openings, normal, *tractions);
for (auto && data : zip(make_view(*this->openings, this->dim),
make_view(*this->tractions, this->dim))) {
const auto & opening = std::get<0>(data);
auto & traction = std::get<1>(data);
auto T = traction.dot(normal);
EXPECT_NEAR(0, (traction - T * normal).norm(), 1e-9);
auto T_expected =
this->material->tractionModeI(opening, normal).dot(normal);
EXPECT_NEAR(T_expected, T, 1e-9);
}
EXPECT_NEAR(expected_dissipated, dissipated(), 1e-5);
this->output_csv();
}
/* ------------------------------------------------------------------------ */
void checkModeII(Real max_opening) {
if (this->dim == 1) {
SUCCEED();
return;
}
std::uniform_real_distribution<Real> dis;
auto direction = Vector<Real>(tangents(0));
auto alpha = dis(gen) + 0.1;
auto beta = dis(gen) + 0.2;
#ifndef debug_
direction = alpha * Vector<Real>(tangents(0));
if (dim > 2)
direction += beta * Vector<Real>(tangents(1));
direction = direction.normalize();
#endif
beta = this->material->get("beta");
this->material->insertion_stress_ =
beta * this->material->sigma_c_ * direction;
addOpening(direction, 0., max_opening, 100);
this->material->computeTractions(*openings, normal, *tractions);
for (auto && data : zip(make_view(*this->openings, this->dim),
make_view(*this->tractions, this->dim))) {
const auto & opening = std::get<0>(data);
const auto & traction = std::get<1>(data);
// In ModeII normal traction should be 0
ASSERT_NEAR(0, traction.dot(normal), 1e-9);
// Normal opening is null
ASSERT_NEAR(0, opening.dot(normal), 1e-16);
auto T = traction.dot(direction);
auto T_expected =
this->material->tractionModeII(opening, normal).dot(direction);
EXPECT_NEAR(T_expected, T, 1e-9);
}
// EXPECT_NEAR(expected_dissipated, dissipated(), 1e-5);
this->output_csv();
}
protected:
Vector<Real> normal;
Matrix<Real> tangents;
std::unique_ptr<Mesh> mesh;
std::unique_ptr<SolidMechanicsModelCohesive> model;
std::unique_ptr<Material> material;
std::unique_ptr<Array<Real>> openings;
std::unique_ptr<Array<Real>> tractions;
std::mt19937 gen;
};
template <template <UInt> class Mat, UInt dim>
struct TestMaterialCohesive : public Mat<dim> {
TestMaterialCohesive(SolidMechanicsModel & model)
: Mat<dim>(model, "test"), insertion_stress_(dim, 0.) {}
virtual void SetUp() {}
virtual void resetInternal() {}
void SetUps() {
this->initMaterial();
this->SetUp();
this->updateInternalParameters();
this->resetInternals();
}
void resetInternals() { this->resetInternal(); }
virtual void computeTractions(Array<Real> & /*openings*/,
const Vector<Real> & /*normal*/,
Array<Real> & /*tractions*/) {}
Vector<Real> insertion_stress_;
Real sigma_c_{0};
bool is_extrinsic{true};
};
template <template <UInt> class Mat, typename dim_>
constexpr UInt TestMaterialCohesiveFixture<Mat, dim_>::dim;

Event Timeline