Page MenuHomec4science

test_3d_explicit_tetrahedron_4.cc
No OneTemporary

File Metadata

Created
Fri, May 10, 08:07

test_3d_explicit_tetrahedron_4.cc

/**
* @file test_3d_explicit_tetrahedron_4.cc
* @author David Kammer <david.kammer@epfl.ch>
* @date Fri Dec 03 12:11:42 2010
*
* @brief test contact search for 3d case in explicit
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_io_msh.hh"
#include "mesh_utils.hh"
#include "solid_mechanics_model.hh"
#include "material.hh"
#include "contact.hh"
#include "contact_neighbor_structure.hh"
#include "regular_grid_neighbor_structure.hh"
#include "contact_search.hh"
#include "contact_search_explicit.hh"
#ifdef AKANTU_USE_IOHELPER
# include "io_helper.h"
#endif //AKANTU_USE_IOHELPER
using namespace akantu;
int main(int argc, char *argv[])
{
int dim = 3;
const ElementType element_type = _tetrahedron_4;
/// load mesh
Mesh my_mesh(dim);
MeshIOMSH mesh_io;
mesh_io.read("cubes.msh", my_mesh);
/// build facet connectivity and surface id
MeshUtils::buildFacets(my_mesh,1,0);
MeshUtils::buildSurfaceID(my_mesh);
UInt max_steps = 2;
unsigned int nb_nodes = my_mesh.getNbNodes();
/// dump facet and surface information to paraview
#ifdef AKANTU_USE_IOHELPER
DumperParaview dumper;
dumper.SetMode(TEXT);
dumper.SetPoints(my_mesh.getNodes().values, dim, nb_nodes, "tetrahedron_4_nodes_test-surface-extraction");
dumper.SetConnectivity((int*)my_mesh.getConnectivity(_tetrahedron_4).values,
TETRA1, my_mesh.getNbElement(_tetrahedron_4), C_MODE);
dumper.SetPrefix("paraview/");
dumper.Init();
dumper.Dump();
#endif //AKANTU_USE_IOHELPER
/// declaration of model
SolidMechanicsModel my_model(my_mesh);
/// model initialization
my_model.initVectors();
// initialize the vectors
memset(my_model.getForce().values, 0, dim*nb_nodes*sizeof(Real));
memset(my_model.getVelocity().values, 0, dim*nb_nodes*sizeof(Real));
memset(my_model.getAcceleration().values, 0, dim*nb_nodes*sizeof(Real));
memset(my_model.getDisplacement().values, 0, dim*nb_nodes*sizeof(Real));
Real * displacement = my_model.getDisplacement().values;
my_model.readMaterials("material.dat");
my_model.initMaterials();
my_model.initModel();
Real time_step = my_model.getStableTimeStep();
my_model.setTimeStep(time_step/10.);
my_model.assembleMassLumped();
/// contact declaration
Contact * my_contact = Contact::newContact(my_model,
_ct_3d_expli,
_cst_expli,
_cnst_regular_grid);
my_contact->initContact(false);
Surface master = 0;
Surface impactor = 1;
my_contact->addMasterSurface(master);
my_model.updateCurrentPosition(); // neighbor structure uses current position for init
my_contact->initNeighborStructure(master);
const NodesNeighborList & my_neighbor_list = dynamic_cast<const NodesNeighborList &>(my_contact->getContactSearch().getContactNeighborStructure(master).getNeighborList());
UInt nb_nodes_neigh = my_neighbor_list.impactor_nodes.getSize();
Vector<UInt> impact_nodes = my_neighbor_list.impactor_nodes;
UInt * impact_nodes_val = impact_nodes.values;
/// print impactor nodes
std::cout << "we have " << nb_nodes_neigh << " impactor nodes:";
for (UInt i = 0; i < nb_nodes_neigh; ++i) {
std::cout << " " << impact_nodes_val[i];
}
std::cout << std::endl;
UInt * master_nodes_offset_val = my_neighbor_list.master_nodes_offset.values;
UInt * master_nodes_val = my_neighbor_list.master_nodes.values;
for (UInt i = 0; i < nb_nodes_neigh; ++i) {
std::cout << " Impactor node: " << impact_nodes_val[i] << " has master nodes:";
for(UInt mn = master_nodes_offset_val[i]; mn < master_nodes_offset_val[i+1]; ++mn) {
std::cout << " " << master_nodes_val[mn];
}
std::cout << std::endl;
}
my_contact->initSearch(); // does nothing so far
std::cout << std::endl << "epsilon = " << std::numeric_limits<Real>::epsilon() << std::endl;
/* ------------------------------------------------------------------------ */
/* Main loop */
/* ------------------------------------------------------------------------ */
for(UInt s = 1; s <= max_steps; ++s) {
std::cout << std::endl << "passing step " << s << "/" << max_steps << std::endl;
/// apply a displacement to the slave body
if(s == 2) {
Real * coord = my_mesh.getNodes().values;
for(UInt n = 0; n < nb_nodes; ++n) {
if(coord[n*dim + 2] > 1.0) {
displacement[n*dim+2] = -0.01;
}
}
/*
UInt nb_elements = my_mesh.getNbElement(element_type);
UInt nb_nodes_element = my_mesh.getNbNodesPerElement(element_type);
Vector<UInt> element_mat = my_model.getElementMaterial(element_type);
UInt * element_mat_val = element_mat.values;
UInt * connectivity = my_mesh.getConnectivity(element_type).values;
for(UInt el = 0; el < nb_elements; ++el) {
std::cout << "element: " << el << " with mat: " << element_mat_val[el] << std::endl;
if(element_mat_val[el] == impactor) {
for(UInt n = 0; n < nb_nodes_element; ++n) {
displacement[connectivity[el * nb_nodes_element + n]+2] = -0.2;
}
}
}*/
}
/// central difference predictor
my_model.explicitPred();
/// update current positions
my_model.updateCurrentPosition();
/// compute the penetration list
PenetrationList * my_penetration_list = new PenetrationList();
const_cast<ContactSearch &>(my_contact->getContactSearch()).findPenetration(master, *my_penetration_list);
UInt nb_nodes_pen = my_penetration_list->penetrating_nodes.getSize();
Vector<UInt> pen_nodes = my_penetration_list->penetrating_nodes;
UInt * pen_nodes_val = pen_nodes.values;
std::cout << "we have " << nb_nodes_pen << " penetrating nodes:";
for (UInt i = 0; i < nb_nodes_pen; ++i)
std::cout << " " << pen_nodes_val[i];
std::cout << std::endl;
delete my_penetration_list;
/// compute the residual
my_model.updateResidual();
/// compute the acceleration
my_model.updateAcceleration();
/// central difference corrector
my_model.explicitCorr();
}
delete my_contact;
finalize();
return EXIT_SUCCESS;
}

Event Timeline