Page MenuHomec4science

test_solid_mechanics_model_implicit_dynamic_2d.cc
No OneTemporary

File Metadata

Created
Thu, May 9, 12:13

test_solid_mechanics_model_implicit_dynamic_2d.cc

/**
* @file test_solid_mechanics_model_implicit_dynamic_2d.cc
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @date Fri Apr 29 11:32:25 2011
*
* @brief test of the dynamic implicit code
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
#include <limits>
#include <fstream>
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_io_msh.hh"
#include "solid_mechanics_model.hh"
#include "material.hh"
#include "static_communicator.hh"
#include "distributed_synchronizer.hh"
#include "mesh_partition_scotch.hh"
#ifdef AKANTU_USE_SCOTCH
#include "mesh_partition_scotch.hh"
#endif
using namespace akantu;
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
# include "io_helper.h"
void paraviewInit(Dumper & dumper, const SolidMechanicsModel & model);
void paraviewDump(Dumper & dumper);
#endif
/* -------------------------------------------------------------------------- */
const Real F = 0.5e4;
#define bar_length 10.
#define bar_height 1.
#define bar_depth 1.
const ElementType TYPE = _triangle_3;
UInt spatial_dimension = 2;
Real time_step = 1e-4;
Real analytical_solution(Real time) {
return 1./pow(M_PI, 4) * ((1. - cos(M_PI*M_PI*time)) + (1. - cos(3*3*M_PI*M_PI*time))/81. + (1. - cos(5*5*M_PI*M_PI*time))/625.);
}
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[])
{
debug::setDebugLevel(dblWarning);
initialize(&argc, &argv);
Mesh mesh(spatial_dimension);
StaticCommunicator * comm = StaticCommunicator::getStaticCommunicator();
Int psize = comm->getNbProc();
Int prank = comm->whoAmI();
MeshPartition * partition = NULL;
if(prank == 0) {
MeshIOMSH mesh_io;
mesh_io.read("beam_2d_lin.msh", mesh);
partition = new MeshPartitionScotch(mesh, spatial_dimension);
partition->reorder();
partition->partitionate(psize);
}
SolidMechanicsModel * model = new SolidMechanicsModel(mesh);
model->initParallel(partition);
// UInt nb_nodes = model->getFEM().getMesh().getNbNodes();
/// model initialization
model->initVectors();
model->initModel();
model->readMaterials("material_implicit_dynamic.dat");
model->initMaterials();
model->initImplicit(true);
// boundary conditions
const Vector<Real> & position = mesh.getNodes();
Vector<bool> & boundary = model->getBoundary();
Vector<Real> & force = model->getForce();
Vector<Real> & displacment = model->getDisplacement();
//initial conditions
model->getForce().clear();
model->getDisplacement().clear();
model->getVelocity().clear();
model->getAcceleration().clear();
// MeshUtils::buildFacets(mesh);
// MeshUtils::buildSurfaceID(mesh);
// CSR<UInt> surface_nodes;
// MeshUtils::buildNodesPerSurface(mesh, surface_nodes);
UInt node_to_print = -1;
bool print_node = false;
// for (UInt s = 0; s < surface_nodes.getNbRows(); ++s) {
// CSR<UInt>::iterator snode = surface_nodes.begin(s);
// for(; snode != surface_nodes.end(s); ++snode) {
// UInt n = *snode;
Vector<UInt> node_to_displace;
for (UInt n = 0; n < mesh.getNbNodes(); ++n) {
Real x = position(n, 0);
Real y = position(n, 1);
Real z = 0;
if(spatial_dimension == 3)
z = position(n, 2);
if(Math::are_float_equal(x, 0.) &&
Math::are_float_equal(y, bar_height / 2.)) {
boundary(n,0) = true;
boundary(n,1) = true;
if(spatial_dimension == 3 && Math::are_float_equal(z, bar_depth / 2.))
boundary(n,2) = true;
}
if(Math::are_float_equal(x, bar_length) &&
Math::are_float_equal(y, bar_height / 2.)) {
boundary(n,1) = true;
if(spatial_dimension == 3 && Math::are_float_equal(z, bar_depth / 2.))
boundary(n,2) = true;
}
if(Math::are_float_equal(x, bar_length / 2.) &&
Math::are_float_equal(y, bar_height / 2.)) {
if(spatial_dimension < 3 || (spatial_dimension == 3 && Math::are_float_equal(z, bar_depth / 2.))) {
force(n,1) = F;
if(mesh.isLocalOrMasterNode(n)) {
print_node = true;
node_to_print = n;
std::cout << "I, proc " << prank +1 << " handle the print of node " << n
<< "(" << x << ", "<< y << ", " << z << ")" << std::endl;
}
}
}
}
// }
model->setTimeStep(time_step);
model->updateResidual();
std::stringstream out;
out << "position-" << TYPE << "_" << std::scientific << time_step << ".csv";
DumperParaview dumper;
paraviewInit(dumper, *model);
std::ofstream pos;
if(print_node) {
pos.open(out.str().c_str());
if(!pos.good()) {
std::cerr << "Cannot open file " << out.str() <<std::endl;
exit(EXIT_FAILURE);
}
pos << "id,time,position,solution" << std::endl;
}
Real time = 0;
UInt count = 0;
// UInt print_freq = 1;
Real error;
model->assembleStiffnessMatrix();
model->assembleMass();
// model->assembleMassLumped();
// Vector<Real> lumped_mass(0,spatial_dimension);
// model->getMassMatrix().lump(lumped_mass);
// debug::setDebugLevel(dblTest);
// std::cout << model->getMass() << lumped_mass;
// debug::setDebugLevel(dblWarning);
model->getMassMatrix().saveMatrix("M.mtx");
model->getStiffnessMatrix().saveMatrix("K.mtx");
/// time loop
for (UInt s = 1; time < 0.62; ++s) {
model->implicitPred();
/// convergence loop
do {
if(count > 0 && prank == 0)
std::cout << "passing step " << s << " " << s * time_step << "s - " << std::setw(4) << count << " : " << std::scientific << error << "\r" << std::flush;
model->updateResidual();
model->solveDynamic();
model->implicitCorr();
count++;
} while(!model->testConvergenceIncrement(1e-12, error) && (count < 1000));
if(prank == 0) std::cout << "passing step " << s << " " << s * time_step << "s - " << std::setw(4) << count << " : " << std::scientific << error << std::endl;
count = 0;
// if(s % print_freq == 0) {
// std::cout << "passing step " << s << "/" << max_steps << " " << s * time_step << "s - " << count / print_freq << std::endl;
// count = 0;
// }
if(print_node) pos << s << "," << s * time_step << "," << displacment(node_to_print, 1) << "," << analytical_solution(s*time_step) << std::endl;
#ifdef AKANTU_USE_IOHELPER
if(s % 10 == 0) paraviewDump(dumper);
#endif
time += time_step;
}
if(print_node) pos.close();
delete model;
finalize();
return EXIT_SUCCESS;
}
/* -------------------------------------------------------------------------- */
/* Dumper vars */
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
/* -------------------------------------------------------------------------- */
template <ElementType type> UInt paraviewType();
template <> UInt paraviewType<_segment_2>() { return LINE1; };
template <> UInt paraviewType<_segment_3>() { return LINE2; };
template <> UInt paraviewType<_triangle_3>() { return TRIANGLE1; };
template <> UInt paraviewType<_triangle_6>() { return TRIANGLE2; };
template <> UInt paraviewType<_quadrangle_4>() { return QUAD1; };
template <> UInt paraviewType<_tetrahedron_4>() { return TETRA1; };
template <> UInt paraviewType<_tetrahedron_10>() { return TETRA2; };
template <> UInt paraviewType<_hexahedron_8>() { return HEX1; };
/* -------------------------------------------------------------------------- */
void paraviewInit(Dumper & dumper, const SolidMechanicsModel & model) {
UInt spatial_dimension = ElementClass<TYPE>::getSpatialDimension();
UInt nb_nodes = model.getFEM().getMesh().getNbNodes();
UInt nb_element = model.getFEM().getMesh().getNbElement(TYPE);
std::stringstream filename; filename << "dynamic_implicit_beam_" << TYPE;
dumper.SetMode(TEXT);
dumper.SetParallelContext(StaticCommunicator::getStaticCommunicator()->whoAmI(), StaticCommunicator::getStaticCommunicator()->getNbProc());
dumper.SetPoints(model.getFEM().getMesh().getNodes().values,
spatial_dimension, nb_nodes, filename.str().c_str());
dumper.SetConnectivity((int *)model.getFEM().getMesh().getConnectivity(TYPE).values,
paraviewType<TYPE>(), nb_element, C_MODE);
dumper.AddNodeDataField(model.getDisplacement().values,
spatial_dimension, "displacements");
dumper.AddNodeDataField(model.getVelocity().values,
spatial_dimension, "velocity");
dumper.AddNodeDataField(model.getAcceleration().values,
spatial_dimension, "acceleration");
dumper.AddNodeDataField(model.getResidual().values,
spatial_dimension, "residual");
dumper.AddNodeDataField(model.getForce().values,
spatial_dimension, "applied_force");
dumper.AddElemDataField(model.getMaterial(0).getStrain(TYPE).values,
spatial_dimension*spatial_dimension, "strain");
dumper.AddElemDataField(model.getMaterial(0).getStrain(TYPE).values,
spatial_dimension*spatial_dimension, "stress");
dumper.SetEmbeddedValue("displacements", 1);
dumper.SetEmbeddedValue("applied_force", 1);
dumper.SetPrefix("paraview/");
dumper.Init();
dumper.Dump();
}
/* -------------------------------------------------------------------------- */
void paraviewDump(Dumper & dumper) {
dumper.Dump();
}
/* -------------------------------------------------------------------------- */
#endif

Event Timeline