Page MenuHomec4science

test_petsc_matrix_apply_boundary.cc
No OneTemporary

File Metadata

Created
Sun, May 5, 14:34

test_petsc_matrix_apply_boundary.cc

/**
* @file test_petsc_matrix_apply_boundary.cc
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
*
* @date creation: Sun Oct 19 2014
* @date last modification: Wed Nov 08 2017
*
* @brief test the applyBoundary method of the PETScMatrix class
*
*
* @section LICENSE
*
* Copyright (©) 2015-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <cstdlib>
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "aka_csr.hh"
#include "communicator.hh"
#include "dof_synchronizer.hh"
#include "element_synchronizer.hh"
#include "fe_engine.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_utils.hh"
#include "petsc_matrix.hh"
#include "mesh_partition_scotch.hh"
using namespace akantu;
int main(int argc, char * argv[]) {
initialize(argc, argv);
const ElementType element_type = _triangle_3;
const GhostType ghost_type = _not_ghost;
Int spatial_dimension = 2;
const auto & comm = akantu::Communicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
/// read the mesh and partition it
Mesh mesh(spatial_dimension);
/* ------------------------------------------------------------------------ */
/* Parallel initialization */
/* ------------------------------------------------------------------------ */
ElementSynchronizer * communicator = NULL;
if (prank == 0) {
/// creation mesh
mesh.read("triangle.msh");
MeshPartitionScotch * partition =
new MeshPartitionScotch(mesh, spatial_dimension);
partition->partitionate(psize);
communicator =
ElementSynchronizer::createDistributedSynchronizerMesh(mesh, partition);
delete partition;
} else {
communicator =
ElementSynchronizer::createDistributedSynchronizerMesh(mesh, NULL);
}
FEEngine * fem =
new FEEngineTemplate<IntegratorGauss, ShapeLagrange, _ek_regular>(
mesh, spatial_dimension, "my_fem");
DOFSynchronizer dof_synchronizer(mesh, spatial_dimension);
Int nb_global_nodes = mesh.getNbGlobalNodes();
dof_synchronizer.initGlobalDOFEquationNumbers();
// fill the matrix with
Int nb_element = mesh.getNbElement(element_type);
Int nb_nodes_per_element = mesh.getNbNodesPerElement(element_type);
Int nb_dofs_per_element = spatial_dimension * nb_nodes_per_element;
SparseMatrix K(nb_global_nodes * spatial_dimension, _symmetric);
K.buildProfile(mesh, dof_synchronizer, spatial_dimension);
Matrix<Real> element_input(nb_dofs_per_element, nb_dofs_per_element, 1);
Array<Real> K_e =
Array<Real>(nb_element, nb_dofs_per_element * nb_dofs_per_element, "K_e");
Array<Real>::matrix_iterator K_e_it =
K_e.begin(nb_dofs_per_element, nb_dofs_per_element);
Array<Real>::matrix_iterator K_e_end =
K_e.end(nb_dofs_per_element, nb_dofs_per_element);
for (; K_e_it != K_e_end; ++K_e_it)
*K_e_it = element_input;
// assemble the test matrix
fem->assembleMatrix(K_e, K, spatial_dimension, element_type, ghost_type);
// create petsc matrix
PETScMatrix petsc_matrix(nb_global_nodes * spatial_dimension, _symmetric);
petsc_matrix.buildProfile(mesh, dof_synchronizer, spatial_dimension);
// add stiffness matrix to petsc matrix
petsc_matrix.add(K, 1);
// create boundary array: block all dofs
Int nb_nodes = mesh.getNbNodes();
Array<bool> boundary = Array<bool>(nb_nodes, spatial_dimension, true);
// apply boundary
petsc_matrix.applyBoundary(boundary);
// test if all entries except the diagonal ones have been zeroed
Real test_passed = 0;
for (Int i = 0; i < nb_nodes * spatial_dimension; ++i) {
if (dof_synchronizer.isLocalOrMasterDOF(i)) {
for (Int j = 0; j < nb_nodes * spatial_dimension; ++j) {
if (dof_synchronizer.isLocalOrMasterDOF(j)) {
if (i == j)
test_passed += petsc_matrix(i, j) - 1;
else
test_passed += petsc_matrix(i, j) - 0;
}
}
}
}
if (std::abs(test_passed) > Math::getTolerance()) {
finalize();
return EXIT_FAILURE;
}
delete communicator;
finalize();
return EXIT_SUCCESS;
}

Event Timeline