Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91534644
heat_transfer_model.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 12, 00:08
Size
9 KB
Mime Type
text/x-c++
Expires
Thu, Nov 14, 00:08 (2 d)
Engine
blob
Format
Raw Data
Handle
22257187
Attached To
rAKA akantu
heat_transfer_model.hh
View Options
/**
* @file heat_transfer_model.hh
* @author Rui WANG<rui.wang@epfl.ch>
* @date Fri May 4 13:35:55 2011
*
* @brief Model of Heat Transfer
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_HEAT_TRANSFER_MODEL_HH__
#define __AKANTU_HEAT_TRANSFER_MODEL_HH__
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "aka_memory.hh"
#include "model.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
namespace
akantu
{
class
IntegrationScheme1stOrder
;
// class Solver;
// class SparseMatrix;
}
__BEGIN_AKANTU__
class
HeatTransferModel
:
public
Model
,
public
DataAccessor
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
typedef
FEMTemplate
<
IntegratorGauss
,
ShapeLagrange
>
MyFEMType
;
HeatTransferModel
(
UInt
spatial_dimension
,
const
ID
&
id
=
"heat_transfer_model"
,
const
MemoryID
&
memory_id
=
0
)
;
HeatTransferModel
(
Mesh
&
mesh
,
UInt
spatial_dimension
=
0
,
const
ID
&
id
=
"heat_transfer_model"
,
const
MemoryID
&
memory_id
=
0
);
virtual
~
HeatTransferModel
()
;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public
:
/// set the parameters
bool
setParam
(
const
std
::
string
&
key
,
const
std
::
string
&
value
);
/// read one material file to instantiate all the materials
void
readMaterials
(
const
std
::
string
&
filename
);
/// allocate all vectors
void
initVectors
();
/// register the tags associated with the parallel synchronizer
void
initParallel
(
MeshPartition
*
partition
,
DataAccessor
*
data_accessor
=
NULL
);
/// initialize the model
void
initModel
();
/// init PBC synchronizer
void
initPBC
();
/// function to print the contain of the class
virtual
void
printself
(
__attribute__
((
unused
))
std
::
ostream
&
stream
,
__attribute__
((
unused
))
int
indent
=
0
)
const
{};
/* ------------------------------------------------------------------------ */
/* Methods for explicit */
/* ------------------------------------------------------------------------ */
public
:
/// compute and get the stable time step
Real
getStableTimeStep
();
/// compute the heat flux
void
updateResidual
();
/// solve the system in temperature rate @f$C\delta \dot T = q_{n+1} - C \dot T_{n}@f$
void
solveExplicitLumped
();
/// calculate the lumped capacity vector for heat transfer problem
void
assembleCapacityLumped
();
/// update the temperature from the temperature rate
void
explicitPred
();
/// update the temperature rate from the increment
void
explicitCorr
();
// /// initialize the heat flux
// void initializeResidual(Vector<Real> &temp);
// /// initialize temperature
// void initializeTemperature(Vector<Real> &temp);
private
:
/// compute the heat flux on ghost types
void
updateResidual
(
const
GhostType
&
ghost_type
);
/// calculate the lumped capacity vector for heat transfer problem (w ghosttype)
void
assembleCapacityLumped
(
const
GhostType
&
ghost_type
);
/// compute the conductivity tensor for each quadrature point in an array
void
computeConductivityOnQuadPoints
(
const
GhostType
&
ghost_type
);
/// compute vector k \grad T for each quadrature point
void
computeKgradT
(
const
GhostType
&
ghost_type
);
/* ------------------------------------------------------------------------ */
/* Data Accessor inherited members */
/* ------------------------------------------------------------------------ */
public
:
inline
UInt
getNbDataToPack
(
const
Element
&
element
,
SynchronizationTag
tag
)
const
;
inline
UInt
getNbDataToUnpack
(
const
Element
&
element
,
SynchronizationTag
tag
)
const
;
inline
void
packData
(
CommunicationBuffer
&
buffer
,
const
Element
&
element
,
SynchronizationTag
tag
)
const
;
inline
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
Element
&
element
,
SynchronizationTag
tag
);
inline
UInt
getNbDataToPack
(
SynchronizationTag
tag
)
const
;
inline
UInt
getNbDataToUnpack
(
SynchronizationTag
tag
)
const
;
inline
void
packData
(
CommunicationBuffer
&
buffer
,
const
UInt
index
,
SynchronizationTag
tag
)
const
;
inline
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
UInt
index
,
SynchronizationTag
tag
);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public
:
/// get the dimension of the system space
AKANTU_GET_MACRO
(
SpatialDimension
,
spatial_dimension
,
UInt
);
/// get the current value of the time step
AKANTU_GET_MACRO
(
TimeStep
,
time_step
,
Real
);
/// set the value of the time step
AKANTU_SET_MACRO
(
TimeStep
,
time_step
,
Real
);
/// get the assembled heat flux
AKANTU_GET_MACRO
(
Residual
,
*
residual
,
Vector
<
Real
>&
);
/// get the lumped capacity
AKANTU_GET_MACRO
(
CapacityLumped
,
*
capacity_lumped
,
Vector
<
Real
>&
);
/// get the boundary vector
AKANTU_GET_MACRO
(
Boundary
,
*
boundary
,
Vector
<
bool
>&
);
/// get the temperature gradient
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
TemperatureGradient
,
temperature_gradient
,
Real
);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
ConductivityOnQpoints
,
conductivity_on_qpoints
,
Real
);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
TemperatureOnQpoints
,
temperature_on_qpoints
,
Real
);
/// get the temperature
AKANTU_GET_MACRO
(
Temperature
,
*
temperature
,
Vector
<
Real
>
&
);
/// get the temperature derivative
AKANTU_GET_MACRO
(
TemperatureRate
,
*
temperature_rate
,
Vector
<
Real
>
&
);
/// get the equation number Vector<Int>
AKANTU_GET_MACRO
(
EquationNumber
,
*
equation_number
,
const
Vector
<
Int
>
&
);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private
:
IntegrationScheme1stOrder
*
integrator
;
/// time step
Real
time_step
;
/// temperatures array
Vector
<
Real
>
*
temperature
;
/// temperatures derivatives array
Vector
<
Real
>
*
temperature_rate
;
/// increment array (@f$\delta \dot T@f$ or @f$\delta T@f$)
Vector
<
Real
>
*
increment
;
/// the spatial dimension
UInt
spatial_dimension
;
/// the density
Real
density
;
/// the speed of the changing temperature
ByElementTypeReal
temperature_gradient
;
/// temperature field on quadrature points
ByElementTypeReal
temperature_on_qpoints
;
/// conductivity tensor on quadrature points
ByElementTypeReal
conductivity_on_qpoints
;
/// vector k \grad T on quad points
ByElementTypeReal
k_gradt_on_qpoints
;
/// vector \int \grad N k \grad T
ByElementTypeReal
int_bt_k_gT
;
/// vector \grad N k \grad T
ByElementTypeReal
bt_k_gT
;
//external flux vector
Vector
<
Real
>
*
external_flux
;
/// residuals array
Vector
<
Real
>
*
residual
;
/// position of a dof in the K matrix
Vector
<
Int
>
*
equation_number
;
//lumped vector
Vector
<
Real
>
*
capacity_lumped
;
/// boundary vector
Vector
<
bool
>
*
boundary
;
//realtime
Real
time
;
///capacity
Real
capacity
;
//conductivity matrix
Real
*
conductivity
;
//linear variation of the conductivity (for temperature dependent conductivity)
Real
conductivity_variation
;
// reference temperature for the interpretation of temperature variation
Real
t_ref
;
//the biggest parameter of conductivity matrix
Real
conductivitymax
;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
#if defined (AKANTU_INCLUDE_INLINE_IMPL)
# include "heat_transfer_model_inline_impl.cc"
#endif
/// standard output stream operator
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
stream
,
const
HeatTransferModel
&
_this
)
{
_this
.
printself
(
stream
);
return
stream
;
}
__END_AKANTU__
#endif
/* __AKANTU_HEAT_TRANSFER_MODEL_HH__ */
Event Timeline
Log In to Comment