Page MenuHomec4science

explicit_dynamic.cc
No OneTemporary

File Metadata

Created
Thu, Dec 12, 19:14

explicit_dynamic.cc

/**
* @file explicit_dynamic.cc
*
* @author Seyedeh Mohadeseh Taheri Mousavi <mohadeseh.taherimousavi@epfl.ch>
*
* @date creation: Sun Jul 12 2015
* @date last modification: Mon Jan 18 2016
*
* @brief This code refers to the explicit dynamic example from the user manual
*
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
int main(int argc, char * argv[]) {
initialize("material.dat", argc, argv);
const UInt spatial_dimension = 3;
const Real pulse_width = 2.;
const Real A = 0.01;
Real time_step;
Real time_factor = 0.8;
UInt max_steps = 1000;
Mesh mesh(spatial_dimension);
if (Communicator::getStaticCommunicator().whoAmI() == 0)
mesh.read("bar.msh");
SolidMechanicsModel model(mesh);
/// model initialization
model.initFull(_analysis_method = _explicit_lumped_mass);
time_step = model.getStableTimeStep();
std::cout << "Time Step = " << time_step * time_factor << "s (" << time_step
<< "s)" << std::endl;
time_step *= time_factor;
model.setTimeStep(time_step);
/// boundary and initial conditions
Array<Real> & displacement = model.getDisplacement();
const Array<Real> & nodes = mesh.getNodes();
for (UInt n = 0; n < mesh.getNbNodes(); ++n) {
Real x = nodes(n) - 2;
// Sinus * Gaussian
Real L = pulse_width;
Real k = 0.1 * 2 * M_PI * 3 / L;
displacement(n) = A * sin(k * x) * exp(-(k * x) * (k * x) / (L * L));
}
std::ofstream energy;
energy.open("energy.csv");
energy << "id,rtime,epot,ekin,tot" << std::endl;
model.setBaseName("explicit_dynamic");
model.addDumpField("displacement");
model.addDumpField("velocity");
model.addDumpField("acceleration");
model.addDumpField("stress");
model.dump();
for (UInt s = 1; s <= max_steps; ++s) {
model.solveStep();
Real epot = model.getEnergy("potential");
Real ekin = model.getEnergy("kinetic");
energy << s << "," << s * time_step << "," << epot << "," << ekin << ","
<< epot + ekin << "," << std::endl;
if (s % 10 == 0)
std::cout << "passing step " << s << "/" << max_steps << std::endl;
model.dump();
}
energy.close();
finalize();
return EXIT_SUCCESS;
}

Event Timeline