Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F96526513
structural_mechanics.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Dec 27, 15:11
Size
1 KB
Mime Type
text/x-python
Expires
Sun, Dec 29, 15:11 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23171792
Attached To
rAKA akantu
structural_mechanics.py
View Options
#!/usr/bin/env python
# coding: utf-8
# # Test of Structural Mechanics
# We will now test the python interface of teh structural mechanics part.
# For that we will use the test `test/test_model/test_structural_mechanics_model/test_structural_mechanics_model_bernoulli_beam_2.cc`, which we will simply reproduce.
import
py11_akantu
as
aka
# Creating the Mesh
# Create a mesh for the two dimensional case
beam
=
aka
.
Mesh
(
2
)
# read in the mesh description
beam
.
read
(
"_bernoulli_beam_2.msh"
,
aka
.
MeshIOType
.
_miot_gmsh_struct
)
# Creating the Model
model
=
aka
.
StructuralMechanicsModel
(
beam
)
# Setting up the Model
# Creating and Inserting the Materials
mat1
=
aka
.
StructuralMaterial
()
mat1
.
E
=
3e10
mat1
.
I
=
0.0025
mat1
.
A
=
0.01
model
.
addMaterial
(
mat1
)
mat2
=
aka
.
StructuralMaterial
()
mat2
.
E
=
3e10
mat2
.
I
=
0.00128
mat2
.
A
=
0.01
model
.
addMaterial
(
mat2
)
# Initializing the Model
# model.initFull(analysis_method = aka.AnalysisMethod._static)
model
.
initFull
()
# Assigning the Materials
materials
=
model
.
getElementMaterialMap
(
aka
.
ElementType
.
_bernoulli_beam_2
)
print
(
hex
(
materials
.
ctypes
.
data
))
# Once we have written to the `materials` variable, everything becomes unstable.
# And the kernel will die.
materials
[
0
][
0
]
=
0
materials
[
1
][
0
]
=
1
print
(
materials
)
# Setting Boundaries
M
=
3600.
q
=
-
6000.
L
=
10.
forces
=
model
.
getExternalForce
()
print
(
forces
)
# Neumann
forces
[
2
,
2
]
=
-
M
forces
[
0
,
1
]
=
q
*
L
/
2
forces
[
0
,
2
]
=
q
*
L
*
L
/
12
forces
[
1
,
1
]
=
q
*
L
/
2
forces
[
1
,
2
]
=
-
q
*
L
*
L
/
12
print
(
forces
)
# Dirichlets
boundary
=
model
.
getBlockedDOFs
()
boundary
[
0
,
:]
=
True
boundary
[
1
,
:]
=
False
boundary
[
2
,
:]
=
False
boundary
[
2
,
1
]
=
True
print
(
model
.
getExternalForce
())
model
.
solveStep
()
disp
=
model
.
getDisplacement
()
d1
=
disp
[
1
,
2
]
d2
=
disp
[
2
,
2
]
d3
=
disp
[
1
,
0
]
print
(
d1
,
5.6
/
4800
)
Event Timeline
Log In to Comment