Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94998538
ntrf_friction.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Dec 12, 01:13
Size
9 KB
Mime Type
text/x-c
Expires
Sat, Dec 14, 01:13 (2 d)
Engine
blob
Format
Raw Data
Handle
22898433
Attached To
rAKA akantu
ntrf_friction.cc
View Options
/**
* @file ntrf_friction.cc
* @author David Kammer <david.kammer@epfl.ch>
* @date Mon Nov 5 10:23:47 2012
*
* @brief implementation of node to rigid flat interface friction
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "ntrf_friction.hh"
__BEGIN_SIMTOOLS__
/* -------------------------------------------------------------------------- */
NTRFFriction
::
NTRFFriction
(
NTRFContact
&
contact
,
const
FrictionID
&
id
,
const
MemoryID
&
memory_id
)
:
Memory
(
memory_id
),
id
(
id
),
contact
(
contact
),
is_sticking
(
0
,
1
,
true
,
id
+
":is_sticking"
,
true
,
"is_sticking"
),
frictional_strength
(
0
,
1
,
0.
,
id
+
":frictional_strength"
,
0.
,
"frictional_strength"
),
friction_traction
(
0
,
contact
.
getModel
().
getSpatialDimension
(),
0.
,
id
+
":friction_traction"
,
0.
,
"friction_traction"
)
{
//mu(0,1,0.,id+":mu",0.,"mu") {
AKANTU_DEBUG_IN
();
this
->
contact
.
registerSyncronizedArray
(
this
->
is_sticking
);
this
->
contact
.
registerSyncronizedArray
(
this
->
frictional_strength
);
this
->
contact
.
registerSyncronizedArray
(
this
->
friction_traction
);
// this->contact.registerSyncronizedArray(this->mu);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
computeFrictionTraction
()
{
AKANTU_DEBUG_IN
();
this
->
computeStickTraction
();
this
->
computeFrictionalStrength
();
SolidMechanicsModel
&
model
=
this
->
contact
.
getModel
();
UInt
dim
=
model
.
getSpatialDimension
();
UInt
nb_imp_nodes
=
this
->
contact
.
getNbContactNodes
();
// get contact arrays
const
SyncronizedArray
<
bool
>
&
is_in_contact
=
this
->
contact
.
getIsInContact
();
// compute friction traction to stop sliding
Real
*
contact_pressure
=
this
->
contact
.
getContactPressure
().
storage
();
Real
*
friction_trac_p
=
this
->
friction_traction
.
storage
();
this
->
is_sticking
.
clear
();
// set to not sticking
for
(
UInt
n
=
0
;
n
<
nb_imp_nodes
;
++
n
)
{
// node pair is in contact
if
(
is_in_contact
(
n
))
{
// check if it is larger than frictional strength
Real
abs_fric
=
Math
::
norm
(
dim
,
&
(
friction_trac_p
[
n
*
dim
]));
if
(
abs_fric
!=
0.
)
{
Real
alpha
=
this
->
frictional_strength
(
n
)
/
abs_fric
;
// larger -> sliding
if
(
alpha
<
1.
)
{
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
this
->
friction_traction
(
n
,
d
)
*=
alpha
;
}
else
this
->
is_sticking
(
n
)
=
true
;
}
else
{
// frictional traction is already zero
this
->
is_sticking
(
n
)
=
true
;
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
computeStickTraction
()
{
AKANTU_DEBUG_IN
();
SolidMechanicsModel
&
model
=
this
->
contact
.
getModel
();
UInt
dim
=
model
.
getSpatialDimension
();
Real
delta_t
=
model
.
getTimeStep
();
UInt
nb_imp_nodes
=
this
->
contact
.
getNbContactNodes
();
// get model arrays
const
Array
<
Real
>
&
mass
=
model
.
getMass
();
// get contact arrays
const
SyncronizedArray
<
UInt
>
&
nodes
=
this
->
contact
.
getSlaves
();
const
SyncronizedArray
<
Real
>
&
lumped_boundary
=
this
->
contact
.
getLumpedBoundary
();
const
SyncronizedArray
<
bool
>
&
is_in_contact
=
this
->
contact
.
getIsInContact
();
// pre-compute the acceleration
// (not increment acceleration, because residual is still Kf)
Array
<
Real
>
acceleration
(
model
.
getFEM
().
getMesh
().
getNbNodes
(),
dim
);
model
.
solveLumped
(
acceleration
,
model
.
getMass
(),
model
.
getResidual
(),
model
.
getBoundary
(),
model
.
getF_M2A
());
// compute relative normal fields of velocity and acceleration
Array
<
Real
>
r_velo
(
0
,
dim
);
Array
<
Real
>
r_acce
(
0
,
dim
);
Array
<
Real
>
r_old_acce
(
0
,
dim
);
this
->
contact
.
computeRelativeTangentialField
(
model
.
getVelocity
(),
r_velo
);
this
->
contact
.
computeRelativeTangentialField
(
acceleration
,
r_acce
);
this
->
contact
.
computeRelativeTangentialField
(
model
.
getAcceleration
(),
r_old_acce
);
AKANTU_DEBUG_ASSERT
(
r_velo
.
getSize
()
==
nb_imp_nodes
,
"computeRelativeNormalField does not give back arrays "
<<
"size == nb_imp_nodes. nb_imp_nodes = "
<<
nb_imp_nodes
<<
" | array size = "
<<
r_velo
.
getSize
());
// compute tangential gap array for all nodes
Array
<
Real
>
gap_dot
(
nb_imp_nodes
,
dim
);
Real
*
gap_dot_p
=
gap_dot
.
storage
();
Real
*
r_velo_p
=
r_velo
.
storage
();
Real
*
r_acce_p
=
r_acce
.
storage
();
Real
*
r_old_acce_p
=
r_old_acce
.
storage
();
for
(
UInt
i
=
0
;
i
<
nb_imp_nodes
*
dim
;
++
i
)
{
*
gap_dot_p
=
*
r_velo_p
+
delta_t
*
*
r_acce_p
-
0.5
*
delta_t
*
*
r_old_acce_p
;
// increment pointers
gap_dot_p
++
;
r_velo_p
++
;
r_acce_p
++
;
r_old_acce_p
++
;
}
// compute friction traction to stop sliding
Real
*
friction_trac_p
=
this
->
friction_traction
.
storage
();
for
(
UInt
n
=
0
;
n
<
nb_imp_nodes
;
++
n
)
{
// node pair is NOT in contact
if
(
!
is_in_contact
(
n
))
{
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
this
->
friction_traction
(
n
,
d
)
=
0.
;
}
// node pair is in contact
else
{
UInt
node
=
nodes
(
n
);
// compute friction traction
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
this
->
friction_traction
(
n
,
d
)
=
mass
(
node
)
*
gap_dot
(
n
,
d
)
/
delta_t
/
lumped_boundary
(
n
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
applyFrictionTraction
()
{
AKANTU_DEBUG_IN
();
SolidMechanicsModel
&
model
=
this
->
contact
.
getModel
();
Array
<
Real
>
&
residual
=
model
.
getResidual
();
UInt
dim
=
model
.
getSpatialDimension
();
UInt
nb_imp_nodes
=
this
->
contact
.
getNbContactNodes
();
const
SyncronizedArray
<
UInt
>
&
nodes
=
this
->
contact
.
getSlaves
();
const
SyncronizedArray
<
Real
>
&
lumped_boundary
=
this
->
contact
.
getLumpedBoundary
();
for
(
UInt
n
=
0
;
n
<
nb_imp_nodes
;
++
n
)
{
UInt
node
=
nodes
(
n
);
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
residual
(
node
,
d
)
-=
lumped_boundary
(
n
)
*
this
->
friction_traction
(
n
,
d
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
registerSyncronizedArray
(
SyncronizedArrayBase
&
array
)
{
AKANTU_DEBUG_IN
();
this
->
frictional_strength
.
registerDependingArray
(
array
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
dumpRestart
(
const
std
::
string
&
file_name
)
const
{
AKANTU_DEBUG_IN
();
this
->
is_sticking
.
dumpRestartFile
(
file_name
);
this
->
frictional_strength
.
dumpRestartFile
(
file_name
);
this
->
friction_traction
.
dumpRestartFile
(
file_name
);
// this->mu.dumpRestartFile(file_name);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
readRestart
(
const
std
::
string
&
file_name
)
{
AKANTU_DEBUG_IN
();
this
->
is_sticking
.
readRestartFile
(
file_name
);
this
->
frictional_strength
.
readRestartFile
(
file_name
);
this
->
friction_traction
.
readRestartFile
(
file_name
);
// this->mu.readRestartFile(file_name);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/*
void NTRFFriction::setMu(Real mu) {
AKANTU_DEBUG_IN();
Real * mu_p = this->mu.storage();
Real nb_mu = this->mu.getSize();
std::fill_n(mu_p, nb_mu, mu);
this->mu.setDefaultValue(mu);
AKANTU_DEBUG_OUT();
}
*/
/* -------------------------------------------------------------------------- */
/*
void NTRFFriction::setMu(UInt node, Real mu) {
AKANTU_DEBUG_IN();
Int index = this->contact.getNodeIndex(node);
if (index < 0) {
AKANTU_DEBUG_WARNING("Node is node a contact node. Therefore, cannot set Mu!!");
}
else {
this->mu(index) = mu;
}
AKANTU_DEBUG_OUT();
}
*/
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
setInternalArray
(
SyncronizedArray
<
Real
>
&
array
,
Real
value
)
{
AKANTU_DEBUG_IN
();
Real
*
array_p
=
array
.
storage
();
Real
nb_array
=
array
.
getSize
();
std
::
fill_n
(
array_p
,
nb_array
,
value
);
array
.
setDefaultValue
(
value
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
setInternalArray
(
SyncronizedArray
<
Real
>
&
array
,
UInt
node
,
Real
value
)
{
AKANTU_DEBUG_IN
();
Int
index
=
this
->
contact
.
getNodeIndex
(
node
);
if
(
index
<
0
)
{
AKANTU_DEBUG_WARNING
(
"Node is node a contact node. Therefore, cannot set Mu!!"
);
}
else
{
array
(
index
)
=
value
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTRFFriction
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
AKANTU_DEBUG_IN
();
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
);
stream
<<
space
<<
"NTRFFriction ["
<<
std
::
endl
;
stream
<<
space
<<
"]"
<<
std
::
endl
;
AKANTU_DEBUG_OUT
();
}
__END_SIMTOOLS__
Event Timeline
Log In to Comment