Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94971675
material_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 11, 20:22
Size
16 KB
Mime Type
text/x-c++
Expires
Fri, Dec 13, 20:22 (2 d)
Engine
blob
Format
Raw Data
Handle
22803035
Attached To
rAKA akantu
material_inline_impl.cc
View Options
/**
* @file material_inline_impl.cc
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
*
* @date creation: Tue Jul 27 2010
* @date last modification: Tue Sep 16 2014
*
* @brief Implementation of the inline functions of the class material
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_MATERIAL_INLINE_IMPL_CC__
#define __AKANTU_MATERIAL_INLINE_IMPL_CC__
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
inline
UInt
Material
::
addElement
(
const
ElementType
&
type
,
UInt
element
,
const
GhostType
&
ghost_type
)
{
Array
<
UInt
>
&
el_filter
=
this
->
element_filter
(
type
,
ghost_type
);
el_filter
.
push_back
(
element
);
return
el_filter
.
getSize
()
-
1
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
Material
::
getTangentStiffnessVoigtSize
(
UInt
dim
)
const
{
return
(
dim
*
(
dim
-
1
)
/
2
+
dim
);
}
/* -------------------------------------------------------------------------- */
inline
UInt
Material
::
getCauchyStressMatrixSize
(
UInt
dim
)
const
{
return
(
dim
*
dim
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
inline
void
Material
::
gradUToF
(
const
Matrix
<
Real
>
&
grad_u
,
Matrix
<
Real
>
&
F
)
{
AKANTU_DEBUG_ASSERT
(
F
.
size
()
>=
grad_u
.
size
()
&&
grad_u
.
size
()
==
dim
*
dim
,
"The dimension of the tensor F should be greater or "
"equal to the dimension of the tensor grad_u."
);
F
.
eye
();
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
for
(
UInt
j
=
0
;
j
<
dim
;
++
j
)
F
(
i
,
j
)
+=
grad_u
(
i
,
j
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
inline
void
Material
::
computeCauchyStressOnQuad
(
const
Matrix
<
Real
>
&
F
,
const
Matrix
<
Real
>
&
piola
,
Matrix
<
Real
>
&
sigma
,
const
Real
&
C33
)
const
{
Real
J
=
F
.
det
()
*
sqrt
(
C33
);
Matrix
<
Real
>
F_S
(
dim
,
dim
);
F_S
.
mul
<
false
,
false
>
(
F
,
piola
);
Real
constant
=
J
?
1.
/
J
:
0
;
sigma
.
mul
<
false
,
true
>
(
F_S
,
F
,
constant
);
}
/* -------------------------------------------------------------------------- */
inline
void
Material
::
rightCauchy
(
const
Matrix
<
Real
>
&
F
,
Matrix
<
Real
>
&
C
)
{
C
.
mul
<
true
,
false
>
(
F
,
F
);
}
/* -------------------------------------------------------------------------- */
inline
void
Material
::
leftCauchy
(
const
Matrix
<
Real
>
&
F
,
Matrix
<
Real
>
&
B
)
{
B
.
mul
<
false
,
true
>
(
F
,
F
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
inline
void
Material
::
gradUToEpsilon
(
const
Matrix
<
Real
>
&
grad_u
,
Matrix
<
Real
>
&
epsilon
)
{
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
for
(
UInt
j
=
0
;
j
<
dim
;
++
j
)
epsilon
(
i
,
j
)
=
0.5
*
(
grad_u
(
i
,
j
)
+
grad_u
(
j
,
i
));
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
inline
void
Material
::
gradUToGreenStrain
(
const
Matrix
<
Real
>
&
grad_u
,
Matrix
<
Real
>
&
epsilon
)
{
epsilon
.
mul
<
true
,
false
>
(
grad_u
,
grad_u
,
.5
);
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
for
(
UInt
j
=
0
;
j
<
dim
;
++
j
)
epsilon
(
i
,
j
)
+=
0.5
*
(
grad_u
(
i
,
j
)
+
grad_u
(
j
,
i
));
}
/* -------------------------------------------------------------------------- */
inline
Real
Material
::
stressToVonMises
(
const
Matrix
<
Real
>
&
stress
)
{
// compute deviatoric stress
UInt
dim
=
stress
.
cols
();
Matrix
<
Real
>
deviatoric_stress
=
Matrix
<
Real
>::
eye
(
dim
,
-
1.
*
stress
.
trace
()
/
3.
);
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
for
(
UInt
j
=
0
;
j
<
dim
;
++
j
)
deviatoric_stress
(
i
,
j
)
+=
stress
(
i
,
j
);
// return Von Mises stress
return
std
::
sqrt
(
3.
*
deviatoric_stress
.
doubleDot
(
deviatoric_stress
)
/
2.
);
}
/* ---------------------------------------------------------------------------*/
template
<
UInt
dim
>
inline
void
Material
::
setCauchyStressArray
(
const
Matrix
<
Real
>
&
S_t
,
Matrix
<
Real
>
&
sigma_voight
)
{
AKANTU_DEBUG_IN
();
sigma_voight
.
clear
();
// see Finite ekement formulations for large deformation dynamic analysis,
// Bathe et al. IJNME vol 9, 1975, page 364 ^t\tau
/*
* 1d: [ s11 ]'
* 2d: [ s11 s22 s12 ]'
* 3d: [ s11 s22 s33 s23 s13 s12 ]
*/
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
// diagonal terms
sigma_voight
(
i
,
0
)
=
S_t
(
i
,
i
);
for
(
UInt
i
=
1
;
i
<
dim
;
++
i
)
// term s12 in 2D and terms s23 s13 in 3D
sigma_voight
(
dim
+
i
-
1
,
0
)
=
S_t
(
dim
-
i
-
1
,
dim
-
1
);
for
(
UInt
i
=
2
;
i
<
dim
;
++
i
)
// term s13 in 3D
sigma_voight
(
dim
+
i
,
0
)
=
S_t
(
0
,
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
inline
void
Material
::
setCauchyStressMatrix
(
const
Matrix
<
Real
>
&
S_t
,
Matrix
<
Real
>
&
sigma
)
{
AKANTU_DEBUG_IN
();
sigma
.
clear
();
/// see Finite ekement formulations for large deformation dynamic analysis,
/// Bathe et al. IJNME vol 9, 1975, page 364 ^t\tau
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
{
for
(
UInt
m
=
0
;
m
<
dim
;
++
m
)
{
for
(
UInt
n
=
0
;
n
<
dim
;
++
n
)
{
sigma
(
i
*
dim
+
m
,
i
*
dim
+
n
)
=
S_t
(
m
,
n
);
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
inline
Element
Material
::
convertToLocalElement
(
const
Element
&
global_element
)
const
{
UInt
ge
=
global_element
.
element
;
#ifndef AKANTU_NDEBUG
UInt
model_mat_index
=
this
->
model
->
getMaterialByElement
(
global_element
.
type
,
global_element
.
ghost_type
)(
ge
);
UInt
mat_index
=
this
->
model
->
getMaterialIndex
(
this
->
name
);
AKANTU_DEBUG_ASSERT
(
model_mat_index
==
mat_index
,
"Conversion of a global element in a local element for "
"the wrong material "
<<
this
->
name
<<
std
::
endl
);
#endif
UInt
le
=
this
->
model
->
getMaterialLocalNumbering
(
global_element
.
type
,
global_element
.
ghost_type
)(
ge
);
Element
tmp_quad
(
global_element
.
type
,
le
,
global_element
.
ghost_type
,
global_element
.
kind
);
return
tmp_quad
;
}
/* -------------------------------------------------------------------------- */
inline
Element
Material
::
convertToGlobalElement
(
const
Element
&
local_element
)
const
{
UInt
le
=
local_element
.
element
;
UInt
ge
=
this
->
element_filter
(
local_element
.
type
,
local_element
.
ghost_type
)(
le
);
Element
tmp_quad
(
local_element
.
type
,
ge
,
local_element
.
ghost_type
,
local_element
.
kind
);
return
tmp_quad
;
}
/* -------------------------------------------------------------------------- */
inline
IntegrationPoint
Material
::
convertToLocalPoint
(
const
IntegrationPoint
&
global_point
)
const
{
const
FEEngine
&
fem
=
this
->
model
->
getFEEngine
();
UInt
nb_quad
=
fem
.
getNbIntegrationPoints
(
global_point
.
type
);
Element
el
=
this
->
convertToLocalElement
(
static_cast
<
const
Element
&>
(
global_point
));
IntegrationPoint
tmp_quad
(
el
,
global_point
.
num_point
,
nb_quad
);
return
tmp_quad
;
}
/* -------------------------------------------------------------------------- */
inline
IntegrationPoint
Material
::
convertToGlobalPoint
(
const
IntegrationPoint
&
local_point
)
const
{
const
FEEngine
&
fem
=
this
->
model
->
getFEEngine
();
UInt
nb_quad
=
fem
.
getNbIntegrationPoints
(
local_point
.
type
);
Element
el
=
this
->
convertToGlobalElement
(
static_cast
<
const
Element
&>
(
local_point
));
IntegrationPoint
tmp_quad
(
el
,
local_point
.
num_point
,
nb_quad
);
return
tmp_quad
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
Material
::
getNbDataForElements
(
const
Array
<
Element
>
&
elements
,
SynchronizationTag
tag
)
const
{
if
(
tag
==
_gst_smm_stress
)
{
return
(
this
->
isFiniteDeformation
()
?
3
:
1
)
*
spatial_dimension
*
spatial_dimension
*
sizeof
(
Real
)
*
this
->
getModel
().
getNbIntegrationPoints
(
elements
);
}
return
0
;
}
/* -------------------------------------------------------------------------- */
inline
void
Material
::
packElementData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
SynchronizationTag
tag
)
const
{
if
(
tag
==
_gst_smm_stress
)
{
if
(
this
->
isFiniteDeformation
())
{
packElementDataHelper
(
piola_kirchhoff_2
,
buffer
,
elements
);
packElementDataHelper
(
gradu
,
buffer
,
elements
);
}
packElementDataHelper
(
stress
,
buffer
,
elements
);
}
}
/* -------------------------------------------------------------------------- */
inline
void
Material
::
unpackElementData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
SynchronizationTag
tag
)
{
if
(
tag
==
_gst_smm_stress
)
{
if
(
this
->
isFiniteDeformation
())
{
unpackElementDataHelper
(
piola_kirchhoff_2
,
buffer
,
elements
);
unpackElementDataHelper
(
gradu
,
buffer
,
elements
);
}
unpackElementDataHelper
(
stress
,
buffer
,
elements
);
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
const
T
&
Material
::
getParam
(
const
ID
&
param
)
const
{
try
{
return
get
<
T
>
(
param
);
}
catch
(...)
{
AKANTU_EXCEPTION
(
"No parameter "
<<
param
<<
" in the material "
<<
getID
());
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
Material
::
setParam
(
const
ID
&
param
,
T
value
)
{
try
{
set
<
T
>
(
param
,
value
);
}
catch
(...)
{
AKANTU_EXCEPTION
(
"No parameter "
<<
param
<<
" in the material "
<<
getID
());
}
updateInternalParameters
();
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
Material
::
packElementDataHelper
(
const
ElementTypeMapArray
<
T
>
&
data_to_pack
,
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
ID
&
fem_id
)
const
{
DataAccessor
::
packElementalDataHelper
<
T
>
(
data_to_pack
,
buffer
,
elements
,
true
,
model
->
getFEEngine
(
fem_id
));
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
Material
::
unpackElementDataHelper
(
ElementTypeMapArray
<
T
>
&
data_to_unpack
,
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
ID
&
fem_id
)
{
DataAccessor
::
unpackElementalDataHelper
<
T
>
(
data_to_unpack
,
buffer
,
elements
,
true
,
model
->
getFEEngine
(
fem_id
));
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
Material
::
registerInternal
<
Real
>
(
InternalField
<
Real
>
&
vect
)
{
internal_vectors_real
[
vect
.
getID
()]
=
&
vect
;
}
template
<>
inline
void
Material
::
registerInternal
<
UInt
>
(
InternalField
<
UInt
>
&
vect
)
{
internal_vectors_uint
[
vect
.
getID
()]
=
&
vect
;
}
template
<>
inline
void
Material
::
registerInternal
<
bool
>
(
InternalField
<
bool
>
&
vect
)
{
internal_vectors_bool
[
vect
.
getID
()]
=
&
vect
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
Material
::
unregisterInternal
<
Real
>
(
InternalField
<
Real
>
&
vect
)
{
internal_vectors_real
.
erase
(
vect
.
getID
());
}
template
<>
inline
void
Material
::
unregisterInternal
<
UInt
>
(
InternalField
<
UInt
>
&
vect
)
{
internal_vectors_uint
.
erase
(
vect
.
getID
());
}
template
<>
inline
void
Material
::
unregisterInternal
<
bool
>
(
InternalField
<
bool
>
&
vect
)
{
internal_vectors_bool
.
erase
(
vect
.
getID
());
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
bool
Material
::
isInternal
(
const
ID
&
id
,
const
ElementKind
&
element_kind
)
const
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
template
<>
inline
bool
Material
::
isInternal
<
Real
>
(
const
ID
&
id
,
const
ElementKind
&
element_kind
)
const
{
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
const_iterator
internal_array
=
internal_vectors_real
.
find
(
this
->
getID
()
+
":"
+
id
);
if
(
internal_array
==
internal_vectors_real
.
end
()
||
internal_array
->
second
->
getElementKind
()
!=
element_kind
)
return
false
;
return
true
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
ElementTypeMap
<
UInt
>
Material
::
getInternalDataPerElem
(
const
ID
&
field_id
,
const
ElementKind
&
element_kind
)
const
{
if
(
!
this
->
template
isInternal
<
T
>
(
field_id
,
element_kind
))
AKANTU_EXCEPTION
(
"Cannot find internal field "
<<
id
<<
" in material "
<<
this
->
name
);
const
InternalField
<
T
>
&
internal_field
=
this
->
template
getInternal
<
T
>
(
field_id
);
const
FEEngine
&
fe_engine
=
internal_field
.
getFEEngine
();
UInt
nb_data_per_quad
=
internal_field
.
getNbComponent
();
ElementTypeMap
<
UInt
>
res
;
for
(
ghost_type_t
::
iterator
gt
=
ghost_type_t
::
begin
();
gt
!=
ghost_type_t
::
end
();
++
gt
)
{
typedef
typename
InternalField
<
T
>::
type_iterator
type_iterator
;
type_iterator
tit
=
internal_field
.
firstType
(
*
gt
);
type_iterator
tend
=
internal_field
.
lastType
(
*
gt
);
for
(;
tit
!=
tend
;
++
tit
)
{
UInt
nb_quadrature_points
=
fe_engine
.
getNbIntegrationPoints
(
*
tit
,
*
gt
);
res
(
*
tit
,
*
gt
)
=
nb_data_per_quad
*
nb_quadrature_points
;
}
}
return
res
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
Material
::
flattenInternal
(
const
std
::
string
&
field_id
,
ElementTypeMapArray
<
T
>
&
internal_flat
,
const
GhostType
ghost_type
,
ElementKind
element_kind
)
const
{
if
(
!
this
->
template
isInternal
<
T
>
(
field_id
,
element_kind
))
AKANTU_EXCEPTION
(
"Cannot find internal field "
<<
id
<<
" in material "
<<
this
->
name
);
const
InternalField
<
T
>
&
internal_field
=
this
->
template
getInternal
<
T
>
(
field_id
);
const
FEEngine
&
fe_engine
=
internal_field
.
getFEEngine
();
const
Mesh
&
mesh
=
fe_engine
.
getMesh
();
typedef
typename
InternalField
<
T
>::
filter_type_iterator
type_iterator
;
type_iterator
tit
=
internal_field
.
filterFirstType
(
ghost_type
);
type_iterator
tend
=
internal_field
.
filterLastType
(
ghost_type
);
for
(;
tit
!=
tend
;
++
tit
)
{
ElementType
type
=
*
tit
;
const
Array
<
Real
>
&
src_vect
=
internal_field
(
type
,
ghost_type
);
const
Array
<
UInt
>
&
filter
=
internal_field
.
getFilter
(
type
,
ghost_type
);
// total number of elements in the corresponding mesh
UInt
nb_element_dst
=
mesh
.
getNbElement
(
type
,
ghost_type
);
// number of element in the internal field
UInt
nb_element_src
=
filter
.
getSize
();
// number of quadrature points per elem
UInt
nb_quad_per_elem
=
fe_engine
.
getNbIntegrationPoints
(
type
);
// number of data per quadrature point
UInt
nb_data_per_quad
=
internal_field
.
getNbComponent
();
if
(
!
internal_flat
.
exists
(
type
,
ghost_type
))
{
internal_flat
.
alloc
(
nb_element_dst
*
nb_quad_per_elem
,
nb_data_per_quad
,
type
,
ghost_type
);
}
if
(
nb_element_src
==
0
)
continue
;
// number of data per element
UInt
nb_data
=
nb_quad_per_elem
*
nb_data_per_quad
;
Array
<
Real
>
&
dst_vect
=
internal_flat
(
type
,
ghost_type
);
dst_vect
.
resize
(
nb_element_dst
*
nb_quad_per_elem
);
Array
<
UInt
>::
const_scalar_iterator
it
=
filter
.
begin
();
Array
<
UInt
>::
const_scalar_iterator
end
=
filter
.
end
();
Array
<
Real
>::
const_vector_iterator
it_src
=
src_vect
.
begin_reinterpret
(
nb_data
,
nb_element_src
);
Array
<
Real
>::
vector_iterator
it_dst
=
dst_vect
.
begin_reinterpret
(
nb_data
,
nb_element_dst
);
for
(;
it
!=
end
;
++
it
,
++
it_src
)
{
it_dst
[
*
it
]
=
*
it_src
;
}
}
}
__END_AKANTU__
#endif
/* __AKANTU_MATERIAL_INLINE_IMPL_CC__ */
Event Timeline
Log In to Comment