Page MenuHomec4science

material_inline_impl.cc
No OneTemporary

File Metadata

Created
Wed, Dec 11, 20:22

material_inline_impl.cc

/**
* @file material_inline_impl.cc
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
*
* @date creation: Tue Jul 27 2010
* @date last modification: Tue Sep 16 2014
*
* @brief Implementation of the inline functions of the class material
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_MATERIAL_INLINE_IMPL_CC__
#define __AKANTU_MATERIAL_INLINE_IMPL_CC__
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
inline UInt Material::addElement(const ElementType & type, UInt element,
const GhostType & ghost_type) {
Array<UInt> & el_filter = this->element_filter(type, ghost_type);
el_filter.push_back(element);
return el_filter.getSize() - 1;
}
/* -------------------------------------------------------------------------- */
inline UInt Material::getTangentStiffnessVoigtSize(UInt dim) const {
return (dim * (dim - 1) / 2 + dim);
}
/* -------------------------------------------------------------------------- */
inline UInt Material::getCauchyStressMatrixSize(UInt dim) const {
return (dim * dim);
}
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void Material::gradUToF(const Matrix<Real> & grad_u, Matrix<Real> & F) {
AKANTU_DEBUG_ASSERT(F.size() >= grad_u.size() && grad_u.size() == dim * dim,
"The dimension of the tensor F should be greater or "
"equal to the dimension of the tensor grad_u.");
F.eye();
for (UInt i = 0; i < dim; ++i)
for (UInt j = 0; j < dim; ++j)
F(i, j) += grad_u(i, j);
}
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void Material::computeCauchyStressOnQuad(const Matrix<Real> & F,
const Matrix<Real> & piola,
Matrix<Real> & sigma,
const Real & C33) const {
Real J = F.det() * sqrt(C33);
Matrix<Real> F_S(dim, dim);
F_S.mul<false, false>(F, piola);
Real constant = J ? 1. / J : 0;
sigma.mul<false, true>(F_S, F, constant);
}
/* -------------------------------------------------------------------------- */
inline void Material::rightCauchy(const Matrix<Real> & F, Matrix<Real> & C) {
C.mul<true, false>(F, F);
}
/* -------------------------------------------------------------------------- */
inline void Material::leftCauchy(const Matrix<Real> & F, Matrix<Real> & B) {
B.mul<false, true>(F, F);
}
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void Material::gradUToEpsilon(const Matrix<Real> & grad_u,
Matrix<Real> & epsilon) {
for (UInt i = 0; i < dim; ++i)
for (UInt j = 0; j < dim; ++j)
epsilon(i, j) = 0.5 * (grad_u(i, j) + grad_u(j, i));
}
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void Material::gradUToGreenStrain(const Matrix<Real> & grad_u,
Matrix<Real> & epsilon) {
epsilon.mul<true, false>(grad_u, grad_u, .5);
for (UInt i = 0; i < dim; ++i)
for (UInt j = 0; j < dim; ++j)
epsilon(i, j) += 0.5 * (grad_u(i, j) + grad_u(j, i));
}
/* -------------------------------------------------------------------------- */
inline Real Material::stressToVonMises(const Matrix<Real> & stress) {
// compute deviatoric stress
UInt dim = stress.cols();
Matrix<Real> deviatoric_stress =
Matrix<Real>::eye(dim, -1. * stress.trace() / 3.);
for (UInt i = 0; i < dim; ++i)
for (UInt j = 0; j < dim; ++j)
deviatoric_stress(i, j) += stress(i, j);
// return Von Mises stress
return std::sqrt(3. * deviatoric_stress.doubleDot(deviatoric_stress) / 2.);
}
/* ---------------------------------------------------------------------------*/
template <UInt dim>
inline void Material::setCauchyStressArray(const Matrix<Real> & S_t,
Matrix<Real> & sigma_voight) {
AKANTU_DEBUG_IN();
sigma_voight.clear();
// see Finite ekement formulations for large deformation dynamic analysis,
// Bathe et al. IJNME vol 9, 1975, page 364 ^t\tau
/*
* 1d: [ s11 ]'
* 2d: [ s11 s22 s12 ]'
* 3d: [ s11 s22 s33 s23 s13 s12 ]
*/
for (UInt i = 0; i < dim; ++i) // diagonal terms
sigma_voight(i, 0) = S_t(i, i);
for (UInt i = 1; i < dim; ++i) // term s12 in 2D and terms s23 s13 in 3D
sigma_voight(dim + i - 1, 0) = S_t(dim - i - 1, dim - 1);
for (UInt i = 2; i < dim; ++i) // term s13 in 3D
sigma_voight(dim + i, 0) = S_t(0, 1);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void Material::setCauchyStressMatrix(const Matrix<Real> & S_t,
Matrix<Real> & sigma) {
AKANTU_DEBUG_IN();
sigma.clear();
/// see Finite ekement formulations for large deformation dynamic analysis,
/// Bathe et al. IJNME vol 9, 1975, page 364 ^t\tau
for (UInt i = 0; i < dim; ++i) {
for (UInt m = 0; m < dim; ++m) {
for (UInt n = 0; n < dim; ++n) {
sigma(i * dim + m, i * dim + n) = S_t(m, n);
}
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
inline Element
Material::convertToLocalElement(const Element & global_element) const {
UInt ge = global_element.element;
#ifndef AKANTU_NDEBUG
UInt model_mat_index = this->model->getMaterialByElement(
global_element.type, global_element.ghost_type)(ge);
UInt mat_index = this->model->getMaterialIndex(this->name);
AKANTU_DEBUG_ASSERT(model_mat_index == mat_index,
"Conversion of a global element in a local element for "
"the wrong material "
<< this->name << std::endl);
#endif
UInt le = this->model->getMaterialLocalNumbering(
global_element.type, global_element.ghost_type)(ge);
Element tmp_quad(global_element.type, le, global_element.ghost_type,
global_element.kind);
return tmp_quad;
}
/* -------------------------------------------------------------------------- */
inline Element
Material::convertToGlobalElement(const Element & local_element) const {
UInt le = local_element.element;
UInt ge =
this->element_filter(local_element.type, local_element.ghost_type)(le);
Element tmp_quad(local_element.type, ge, local_element.ghost_type,
local_element.kind);
return tmp_quad;
}
/* -------------------------------------------------------------------------- */
inline IntegrationPoint
Material::convertToLocalPoint(const IntegrationPoint & global_point) const {
const FEEngine & fem = this->model->getFEEngine();
UInt nb_quad = fem.getNbIntegrationPoints(global_point.type);
Element el =
this->convertToLocalElement(static_cast<const Element &>(global_point));
IntegrationPoint tmp_quad(el, global_point.num_point, nb_quad);
return tmp_quad;
}
/* -------------------------------------------------------------------------- */
inline IntegrationPoint
Material::convertToGlobalPoint(const IntegrationPoint & local_point) const {
const FEEngine & fem = this->model->getFEEngine();
UInt nb_quad = fem.getNbIntegrationPoints(local_point.type);
Element el =
this->convertToGlobalElement(static_cast<const Element &>(local_point));
IntegrationPoint tmp_quad(el, local_point.num_point, nb_quad);
return tmp_quad;
}
/* -------------------------------------------------------------------------- */
inline UInt Material::getNbDataForElements(const Array<Element> & elements,
SynchronizationTag tag) const {
if (tag == _gst_smm_stress) {
return (this->isFiniteDeformation() ? 3 : 1) * spatial_dimension *
spatial_dimension * sizeof(Real) *
this->getModel().getNbIntegrationPoints(elements);
}
return 0;
}
/* -------------------------------------------------------------------------- */
inline void Material::packElementData(CommunicationBuffer & buffer,
const Array<Element> & elements,
SynchronizationTag tag) const {
if (tag == _gst_smm_stress) {
if (this->isFiniteDeformation()) {
packElementDataHelper(piola_kirchhoff_2, buffer, elements);
packElementDataHelper(gradu, buffer, elements);
}
packElementDataHelper(stress, buffer, elements);
}
}
/* -------------------------------------------------------------------------- */
inline void Material::unpackElementData(CommunicationBuffer & buffer,
const Array<Element> & elements,
SynchronizationTag tag) {
if (tag == _gst_smm_stress) {
if (this->isFiniteDeformation()) {
unpackElementDataHelper(piola_kirchhoff_2, buffer, elements);
unpackElementDataHelper(gradu, buffer, elements);
}
unpackElementDataHelper(stress, buffer, elements);
}
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline const T & Material::getParam(const ID & param) const {
try {
return get<T>(param);
} catch (...) {
AKANTU_EXCEPTION("No parameter " << param << " in the material "
<< getID());
}
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline void Material::setParam(const ID & param, T value) {
try {
set<T>(param, value);
} catch (...) {
AKANTU_EXCEPTION("No parameter " << param << " in the material "
<< getID());
}
updateInternalParameters();
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline void Material::packElementDataHelper(
const ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer,
const Array<Element> & elements, const ID & fem_id) const {
DataAccessor::packElementalDataHelper<T>(data_to_pack, buffer, elements, true,
model->getFEEngine(fem_id));
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline void Material::unpackElementDataHelper(
ElementTypeMapArray<T> & data_to_unpack, CommunicationBuffer & buffer,
const Array<Element> & elements, const ID & fem_id) {
DataAccessor::unpackElementalDataHelper<T>(data_to_unpack, buffer, elements,
true, model->getFEEngine(fem_id));
}
/* -------------------------------------------------------------------------- */
template <>
inline void Material::registerInternal<Real>(InternalField<Real> & vect) {
internal_vectors_real[vect.getID()] = &vect;
}
template <>
inline void Material::registerInternal<UInt>(InternalField<UInt> & vect) {
internal_vectors_uint[vect.getID()] = &vect;
}
template <>
inline void Material::registerInternal<bool>(InternalField<bool> & vect) {
internal_vectors_bool[vect.getID()] = &vect;
}
/* -------------------------------------------------------------------------- */
template <>
inline void Material::unregisterInternal<Real>(InternalField<Real> & vect) {
internal_vectors_real.erase(vect.getID());
}
template <>
inline void Material::unregisterInternal<UInt>(InternalField<UInt> & vect) {
internal_vectors_uint.erase(vect.getID());
}
template <>
inline void Material::unregisterInternal<bool>(InternalField<bool> & vect) {
internal_vectors_bool.erase(vect.getID());
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline bool Material::isInternal(const ID & id,
const ElementKind & element_kind) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
template <>
inline bool Material::isInternal<Real>(const ID & id,
const ElementKind & element_kind) const {
std::map<ID, InternalField<Real> *>::const_iterator internal_array =
internal_vectors_real.find(this->getID() + ":" + id);
if (internal_array == internal_vectors_real.end() ||
internal_array->second->getElementKind() != element_kind)
return false;
return true;
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline ElementTypeMap<UInt>
Material::getInternalDataPerElem(const ID & field_id,
const ElementKind & element_kind) const {
if (!this->template isInternal<T>(field_id, element_kind))
AKANTU_EXCEPTION("Cannot find internal field " << id << " in material "
<< this->name);
const InternalField<T> & internal_field =
this->template getInternal<T>(field_id);
const FEEngine & fe_engine = internal_field.getFEEngine();
UInt nb_data_per_quad = internal_field.getNbComponent();
ElementTypeMap<UInt> res;
for (ghost_type_t::iterator gt = ghost_type_t::begin();
gt != ghost_type_t::end(); ++gt) {
typedef typename InternalField<T>::type_iterator type_iterator;
type_iterator tit = internal_field.firstType(*gt);
type_iterator tend = internal_field.lastType(*gt);
for (; tit != tend; ++tit) {
UInt nb_quadrature_points = fe_engine.getNbIntegrationPoints(*tit, *gt);
res(*tit, *gt) = nb_data_per_quad * nb_quadrature_points;
}
}
return res;
}
/* -------------------------------------------------------------------------- */
template <typename T>
void Material::flattenInternal(const std::string & field_id,
ElementTypeMapArray<T> & internal_flat,
const GhostType ghost_type,
ElementKind element_kind) const {
if (!this->template isInternal<T>(field_id, element_kind))
AKANTU_EXCEPTION("Cannot find internal field " << id << " in material "
<< this->name);
const InternalField<T> & internal_field =
this->template getInternal<T>(field_id);
const FEEngine & fe_engine = internal_field.getFEEngine();
const Mesh & mesh = fe_engine.getMesh();
typedef typename InternalField<T>::filter_type_iterator type_iterator;
type_iterator tit = internal_field.filterFirstType(ghost_type);
type_iterator tend = internal_field.filterLastType(ghost_type);
for (; tit != tend; ++tit) {
ElementType type = *tit;
const Array<Real> & src_vect = internal_field(type, ghost_type);
const Array<UInt> & filter = internal_field.getFilter(type, ghost_type);
// total number of elements in the corresponding mesh
UInt nb_element_dst = mesh.getNbElement(type, ghost_type);
// number of element in the internal field
UInt nb_element_src = filter.getSize();
// number of quadrature points per elem
UInt nb_quad_per_elem = fe_engine.getNbIntegrationPoints(type);
// number of data per quadrature point
UInt nb_data_per_quad = internal_field.getNbComponent();
if (!internal_flat.exists(type, ghost_type)) {
internal_flat.alloc(nb_element_dst * nb_quad_per_elem,
nb_data_per_quad, type, ghost_type);
}
if (nb_element_src == 0)
continue;
// number of data per element
UInt nb_data = nb_quad_per_elem * nb_data_per_quad;
Array<Real> & dst_vect = internal_flat(type, ghost_type);
dst_vect.resize(nb_element_dst * nb_quad_per_elem);
Array<UInt>::const_scalar_iterator it = filter.begin();
Array<UInt>::const_scalar_iterator end = filter.end();
Array<Real>::const_vector_iterator it_src =
src_vect.begin_reinterpret(nb_data, nb_element_src);
Array<Real>::vector_iterator it_dst =
dst_vect.begin_reinterpret(nb_data, nb_element_dst);
for (; it != end; ++it, ++it_src) {
it_dst[*it] = *it_src;
}
}
}
__END_AKANTU__
#endif /* __AKANTU_MATERIAL_INLINE_IMPL_CC__ */

Event Timeline