Page MenuHomec4science

structural_mechanics_model.hh
No OneTemporary

File Metadata

Created
Wed, Dec 11, 16:52

structural_mechanics_model.hh

/**
* @file structural_mechanics_model.hh
*
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author Sébastien Hartmann <sebastien.hartmann@epfl.ch>
* @author Philip Mueller <philip.paul.mueller@bluemail.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Damien Spielmann <damien.spielmann@epfl.ch>
*
* @date creation: Fri Jul 15 2011
* @date last modification: Thu Apr 01 2021
*
* @brief Particular implementation of the structural elements in the
* StructuralMechanicsModel
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_named_argument.hh"
#include "boundary_condition.hh"
#include "model.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_STRUCTURAL_MECHANICS_MODEL_HH_
#define AKANTU_STRUCTURAL_MECHANICS_MODEL_HH_
/* -------------------------------------------------------------------------- */
namespace akantu {
class Material;
class MaterialSelector;
class DumperIOHelper;
class NonLocalManager;
template <ElementKind kind, class IntegrationOrderFunctor>
class IntegratorGauss;
template <ElementKind kind> class ShapeStructural;
} // namespace akantu
namespace akantu {
struct StructuralMaterial {
Real E{0};
Real A{1};
Real I{0};
Real Iz{0};
Real Iy{0};
Real GJ{0};
Real rho{0};
Real t{0};
Real nu{0};
};
class StructuralMechanicsModel : public Model {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
using MyFEEngineType =
FEEngineTemplate<IntegratorGauss, ShapeStructural, _ek_structural>;
StructuralMechanicsModel(Mesh & mesh, UInt dim = _all_dimensions,
const ID & id = "structural_mechanics_model");
~StructuralMechanicsModel() override;
/// Init full model
void initFullImpl(const ModelOptions & options) override;
/// Init boundary FEEngine
void initFEEngineBoundary() override;
/* ------------------------------------------------------------------------ */
/* Virtual methods from SolverCallback */
/* ------------------------------------------------------------------------ */
/// get the type of matrix needed
MatrixType getMatrixType(const ID & matrix_id) const override;
/// callback to assemble a Matrix
void assembleMatrix(const ID & matrix_id) override;
/// callback to assemble a lumped Matrix
void assembleLumpedMatrix(const ID & matrix_id) override;
/// callback to assemble the residual (rhs)
void assembleResidual() override;
void assembleResidual(const ID & residual_part) override;
bool canSplitResidual() const override { return true; }
void afterSolveStep(bool converged) override;
/// compute kinetic energy
Real getKineticEnergy();
/// compute potential energy
Real getPotentialEnergy();
/// compute the specified energy
Real getEnergy(const ID & energy);
/**
* \brief This function computes the an approximation of the lumped mass.
*
* The mass is computed by looping over all beams and computing their mass.
* The mass of a single beam is computed by the (initial) length of the beam,
* its cross sectional area and its density.
* The beam mass is then equaly distributed among the two nodes.
*
* For computing the rotational inertia, the function assumes that the mass of
* a node is uniformaly distributed inside a disc (2D) or a sphere (3D). The
* size of that disc, depends on the volume of the beam.
*
* Note that the computation of the mass is not unambigius.
* The reason for this is, that the units of `StructralMaterial::rho` are not
* clear. By default the function assumes that its unit are 'Mass per Volume'.
* However, this makes the computed mass different than the consistent mass,
* which seams to assume that its units are 'mass per unit length'.
* The main difference between thge two are not the values, but that the
* first version depends on `StructuralMaterial::A` while the later does not.
* By defining the macro `AKANTU_STRUCTURAL_MECHANICS_CONSISTENT_LUMPED_MASS`
* the function will compute the mass in a way that is consistent with the
* consistent mass matrix.
*
* \note The lumped mass is not stored inside the DOFManager.
*
* \param ghost_type Should ghost types be computed.
*/
void assembleLumpedMassMatrix();
/* ------------------------------------------------------------------------ */
/* Virtual methods from Model */
/* ------------------------------------------------------------------------ */
protected:
/// get some default values for derived classes
std::tuple<ID, TimeStepSolverType>
getDefaultSolverID(const AnalysisMethod & method) override;
ModelSolverOptions
getDefaultSolverOptions(const TimeStepSolverType & type) const override;
static UInt getNbDegreeOfFreedom(ElementType type);
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
void initSolver(TimeStepSolverType time_step_solver_type,
NonLinearSolverType non_linear_solver_type) override;
/// initialize the model
void initModel() override;
/// compute the stresses per elements
void computeStresses();
/// compute the nodal forces
void assembleInternalForce();
/// compute the nodal forces for an element type
void assembleInternalForce(ElementType type, GhostType gt);
/// assemble the stiffness matrix
void assembleStiffnessMatrix();
/// assemble the mass matrix for consistent mass resolutions
void assembleMassMatrix();
protected:
/// assemble the mass matrix for either _ghost or _not_ghost elements
void assembleMassMatrix(GhostType ghost_type);
/// computes rho
void computeRho(Array<Real> & rho, ElementType type, GhostType ghost_type);
/// finish the computation of residual to solve in increment
void updateResidualInternal();
/* ------------------------------------------------------------------------ */
private:
template <ElementType type> void assembleStiffnessMatrix();
template <ElementType type> void computeStressOnQuad();
template <ElementType type>
void computeTangentModuli(Array<Real> & tangent_moduli);
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public:
std::shared_ptr<dumpers::Field>
createNodalFieldReal(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
std::shared_ptr<dumpers::Field>
createNodalFieldBool(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
std::shared_ptr<dumpers::Field>
createElementalField(const std::string & field_name,
const std::string & group_name, bool padding_flag,
UInt spatial_dimension, ElementKind kind) override;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// set the value of the time step
void setTimeStep(Real time_step, const ID & solver_id = "") override;
/// get the StructuralMechanicsModel::displacement vector
AKANTU_GET_MACRO(Displacement, *displacement_rotation, Array<Real> &);
/// get the StructuralMechanicsModel::velocity vector
AKANTU_GET_MACRO(Velocity, *velocity, Array<Real> &);
/// get the StructuralMechanicsModel::acceleration vector, updated
/// by
/// StructuralMechanicsModel::updateAcceleration
AKANTU_GET_MACRO(Acceleration, *acceleration, Array<Real> &);
/// get the StructuralMechanicsModel::external_force vector
AKANTU_GET_MACRO(ExternalForce, *external_force, Array<Real> &);
/// get the StructuralMechanicsModel::internal_force vector (boundary forces)
AKANTU_GET_MACRO(InternalForce, *internal_force, Array<Real> &);
/// get the StructuralMechanicsModel::boundary vector
AKANTU_GET_MACRO(BlockedDOFs, *blocked_dofs, Array<bool> &);
/**
* Returns a const reference to the array that stores the lumped mass.
*
* The returned array has dimension `N x d` where `N` is the number of nodes
* and `d`, is the number of degrees of freedom per node.
*/
inline const Array<Real> & getLumpedMass() const {
if (this->mass == nullptr) {
AKANTU_EXCEPTION("The pointer to the mass was not allocated.");
};
return *(this->mass);
};
// These function is an alias, for compability with the solid mechanics
inline const Array<Real> & getMass() const { return this->getLumpedMass(); }
// Creates the array for storing the mass
bool allocateLumpedMassArray();
/**
* Tests if *this has a lumped mass pointer.
*/
inline bool hasLumpedMass() const { return (this->mass != nullptr); };
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(RotationMatrix, rotation_matrix, Real);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Stress, stress, Real);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE(ElementMaterial, element_material, UInt);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE(Set_ID, set_ID, UInt);
/**
* \brief This function adds the `StructuralMaterial` material to the list of
* materials managed by *this.
*
* It is important that this function might invalidate all references to
* structural materials, that were previously optained by `getMaterial()`.
*
* \param material The new material.
*
* \return The ID of the material that was added.
*
* \note The return type is is new.
*/
UInt addMaterial(StructuralMaterial & material, const ID & name = "");
const StructuralMaterial &
getMaterialByElement(const Element & element) const;
/**
* \brief Returns the ith material of *this.
* \param i The ith material
*/
const StructuralMaterial & getMaterial(UInt material_index) const;
const StructuralMaterial & getMaterial(const ID & name) const;
/**
* \brief Returns the number of the different materials inside *this.
*/
UInt getNbMaterials() const { return materials.size(); }
/* ------------------------------------------------------------------------ */
/* Boundaries (structural_mechanics_model_boundary.cc) */
/* ------------------------------------------------------------------------ */
public:
/// Compute Linear load function set in global axis
void computeForcesByGlobalTractionArray(const Array<Real> & traction_global,
ElementType type);
/// Compute Linear load function set in local axis
void computeForcesByLocalTractionArray(const Array<Real> & tractions,
ElementType type);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private:
/// time step
Real time_step;
/// conversion coefficient form force/mass to acceleration
Real f_m2a;
/// displacements array
std::unique_ptr<Array<Real>> displacement_rotation;
/// velocities array
std::unique_ptr<Array<Real>> velocity;
/// accelerations array
std::unique_ptr<Array<Real>> acceleration;
/// forces array
std::unique_ptr<Array<Real>> internal_force;
/// forces array
std::unique_ptr<Array<Real>> external_force;
/**
* \brief This is the "lumped" mass array.
*
* It is a bit special, since it is not a one dimensional array, bit it is
* actually a matrix. The number of rows equals the number of nodes. The
* number of colums equals the number of degrees of freedoms per node. This
* layout makes the thing a bit more simple.
*
* Note that it is only allocated in case, the "Lumped" mode is enabled.
*/
std::unique_ptr<Array<Real>> mass;
/// boundaries array
std::unique_ptr<Array<bool>> blocked_dofs;
/// stress array
ElementTypeMapArray<Real> stress;
ElementTypeMapArray<UInt> element_material;
// Define sets of beams
ElementTypeMapArray<UInt> set_ID;
/// number of degre of freedom
UInt nb_degree_of_freedom;
// Rotation matrix
ElementTypeMapArray<Real> rotation_matrix;
// /// analysis method check the list in akantu::AnalysisMethod
// AnalysisMethod method;
/// flag defining if the increment must be computed or not
bool increment_flag;
bool need_to_reassemble_mass{true};
bool need_to_reassemble_stiffness{true};
bool need_to_reassemble_lumpedMass{true};
/* ------------------------------------------------------------------------ */
std::vector<StructuralMaterial> materials;
std::map<std::string, UInt> materials_names_to_id;
};
} // namespace akantu
#include "structural_mechanics_model_inline_impl.hh"
#endif /* AKANTU_STRUCTURAL_MECHANICS_MODEL_HH_ */

Event Timeline