Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98057767
bernoulli_beam_2_exemple.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Jan 9, 04:01
Size
5 KB
Mime Type
text/x-c
Expires
Sat, Jan 11, 04:01 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23337314
Attached To
rAKA akantu
bernoulli_beam_2_exemple.cc
View Options
/**
* @file bernoulli_beam_2_exemple.cc
*
* @author Fabian Barras <fabian.barras@epfl.ch>
*
* @date creation: Thu Jun 12 2014
* @date last modification: Thu Jun 12 2014
*
* @brief Computation of the analytical exemple 1.1 in the TGC vol 6
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <limits>
#include <fstream>
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_io_msh.hh"
#include "structural_mechanics_model.hh"
#include "material.hh"
/* -------------------------------------------------------------------------- */
#define TYPE _bernoulli_beam_2
using
namespace
akantu
;
//Linear load function
static
void
lin_load
(
double
*
position
,
double
*
load
,
__attribute__
((
unused
))
Real
*
normal
,
__attribute__
((
unused
))
UInt
surface_id
){
memset
(
load
,
0
,
sizeof
(
Real
)
*
3
);
if
(
position
[
0
]
<=
10
){
load
[
1
]
=
-
6000
;
}
}
int
main
(
int
argc
,
char
*
argv
[]){
initialize
(
argc
,
argv
);
debug
::
setDebugLevel
(
dblWarning
);
/* -------------------------------------------------------------------------- */
// Defining the mesh
Mesh
beams
(
2
);
UInt
nb_nodes
=
3
;
UInt
nb_nodes_1
=
1
;
UInt
nb_nodes_2
=
nb_nodes
-
nb_nodes_1
-
1
;
UInt
nb_element
=
nb_nodes
-
1
;
Array
<
Real
>
&
nodes
=
const_cast
<
Array
<
Real
>
&>
(
beams
.
getNodes
());
nodes
.
resize
(
nb_nodes
);
beams
.
addConnectivityType
(
_bernoulli_beam_2
);
Array
<
UInt
>
&
connectivity
=
const_cast
<
Array
<
UInt
>
&>
(
beams
.
getConnectivity
(
_bernoulli_beam_2
));
connectivity
.
resize
(
nb_element
);
for
(
UInt
i
=
0
;
i
<
nb_nodes
;
++
i
)
{
nodes
(
i
,
1
)
=
0
;
}
for
(
UInt
i
=
0
;
i
<
nb_nodes_1
;
++
i
)
{
nodes
(
i
,
0
)
=
10.
*
i
/
((
Real
)
nb_nodes_1
);
}
nodes
(
nb_nodes_1
,
0
)
=
10
;
for
(
UInt
i
=
0
;
i
<
nb_nodes_2
;
++
i
)
{
nodes
(
nb_nodes_1
+
i
+
1
,
0
)
=
10
+
8.
*
(
i
+
1
)
/
((
Real
)
nb_nodes_2
);
}
for
(
UInt
i
=
0
;
i
<
nb_element
;
++
i
)
{
connectivity
(
i
,
0
)
=
i
;
connectivity
(
i
,
1
)
=
i
+
1
;
}
/* -------------------------------------------------------------------------- */
// Defining the materials
StructuralMechanicsModel
model
(
beams
);
StructuralMaterial
mat1
;
mat1
.
E
=
3e10
;
mat1
.
I
=
0.0025
;
mat1
.
A
=
0.01
;
model
.
addMaterial
(
mat1
);
StructuralMaterial
mat2
;
mat2
.
E
=
3e10
;
mat2
.
I
=
0.00128
;
mat2
.
A
=
0.01
;
model
.
addMaterial
(
mat2
);
/* -------------------------------------------------------------------------- */
// Defining the forces
model
.
initFull
();
const
Real
M
=
-
3600
;
// Momentum at 3
Array
<
Real
>
&
forces
=
model
.
getForce
();
Array
<
Real
>
&
displacement
=
model
.
getDisplacement
();
Array
<
bool
>
&
boundary
=
model
.
getBlockedDOFs
();
const
Array
<
Real
>
&
N_M
=
model
.
getStress
(
_bernoulli_beam_2
);
Array
<
UInt
>
&
element_material
=
model
.
getElementMaterial
(
_bernoulli_beam_2
);
forces
.
clear
();
displacement
.
clear
();
for
(
UInt
i
=
0
;
i
<
nb_nodes_2
;
++
i
)
{
element_material
(
i
+
nb_nodes_1
)
=
1
;
}
forces
(
nb_nodes
-
1
,
2
)
+=
M
;
model
.
computeForcesFromFunction
<
_bernoulli_beam_2
>
(
lin_load
,
_bft_traction
);
/* -------------------------------------------------------------------------- */
// Defining the boundary conditions
boundary
(
0
,
0
)
=
true
;
boundary
(
0
,
1
)
=
true
;
boundary
(
0
,
2
)
=
true
;
boundary
(
nb_nodes_1
,
1
)
=
true
;
boundary
(
nb_nodes
-
1
,
1
)
=
true
;
/* -------------------------------------------------------------------------- */
// Solve
Real
error
;
model
.
assembleStiffnessMatrix
();
UInt
count
=
0
;
model
.
addDumpFieldVector
(
"displacement"
);
model
.
addDumpField
(
"rotation"
);
model
.
addDumpFieldVector
(
"force"
);
model
.
addDumpField
(
"momentum"
);
do
{
if
(
count
!=
0
)
std
::
cerr
<<
count
<<
" - "
<<
error
<<
std
::
endl
;
model
.
updateResidual
();
model
.
solve
();
count
++
;
}
while
(
!
model
.
testConvergenceIncrement
(
1e-10
,
error
)
&&
count
<
10
);
std
::
cerr
<<
count
<<
" - "
<<
error
<<
std
::
endl
;
/* -------------------------------------------------------------------------- */
// Post-Processing
model
.
computeStresses
();
std
::
cout
<<
" d1 = "
<<
displacement
(
nb_nodes_1
,
2
)
<<
std
::
endl
;
std
::
cout
<<
" d2 = "
<<
displacement
(
nb_nodes
-
1
,
2
)
<<
std
::
endl
;
std
::
cout
<<
" M1 = "
<<
N_M
(
0
,
1
)
<<
std
::
endl
;
std
::
cout
<<
" M2 = "
<<
N_M
(
2
*
(
nb_nodes
-
2
),
1
)
<<
std
::
endl
;
model
.
dump
();
finalize
();
}
Event Timeline
Log In to Comment