Page MenuHomec4science

shape_functions.cc
No OneTemporary

File Metadata

Created
Wed, Dec 4, 20:39

shape_functions.cc

/**
* Copyright (©) 2017-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "shape_functions.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
ShapeFunctions::ShapeFunctions(const Mesh & mesh, Int spatial_dimension,
const ID & id)
: shapes("shapes_generic", id),
shapes_derivatives("shapes_derivatives_generic", id), mesh(mesh),
_spatial_dimension(spatial_dimension) {}
/* -------------------------------------------------------------------------- */
template <ElementType type>
inline void
ShapeFunctions::initElementalFieldInterpolationFromIntegrationPoints(
const Array<Real> & interpolation_points_coordinates,
ElementTypeMapArray<Real> & interpolation_points_coordinates_matrices,
ElementTypeMapArray<Real> & quad_points_coordinates_inv_matrices,
const Array<Real> & quadrature_points_coordinates, GhostType ghost_type,
const Array<Idx> & element_filter) const {
AKANTU_DEBUG_IN();
auto spatial_dimension = this->mesh.getSpatialDimension();
auto nb_element = this->mesh.getNbElement(type, ghost_type);
decltype(nb_element) nb_element_filter;
if (element_filter == empty_filter) {
nb_element_filter = nb_element;
} else {
nb_element_filter = element_filter.size();
}
constexpr auto nb_quad_per_element =
GaussIntegrationElement<type>::getNbQuadraturePoints();
auto nb_interpolation_points_per_elem =
interpolation_points_coordinates.size() / nb_element;
AKANTU_DEBUG_ASSERT(interpolation_points_coordinates.size() % nb_element == 0,
"Number of interpolation points should be a multiple of "
"total number of elements");
if (not quad_points_coordinates_inv_matrices.exists(type, ghost_type)) {
quad_points_coordinates_inv_matrices.alloc(
nb_element_filter, nb_quad_per_element * nb_quad_per_element, type,
ghost_type);
} else {
quad_points_coordinates_inv_matrices(type, ghost_type)
.resize(nb_element_filter);
}
if (!interpolation_points_coordinates_matrices.exists(type, ghost_type)) {
interpolation_points_coordinates_matrices.alloc(
nb_element_filter,
nb_interpolation_points_per_elem * nb_quad_per_element, type,
ghost_type);
} else {
interpolation_points_coordinates_matrices(type, ghost_type)
.resize(nb_element_filter);
}
auto & quad_inv_mat = quad_points_coordinates_inv_matrices(type, ghost_type);
auto & interp_points_mat =
interpolation_points_coordinates_matrices(type, ghost_type);
Matrix<Real, nb_quad_per_element, nb_quad_per_element> quad_coord_matrix;
auto points_coords_begin =
make_view(interpolation_points_coordinates, spatial_dimension,
nb_interpolation_points_per_elem)
.begin();
/// loop over the elements of the current material and element type
for (auto && data :
zip(element_filter,
make_view<nb_quad_per_element, nb_quad_per_element>(quad_inv_mat),
make_view(interp_points_mat, nb_interpolation_points_per_elem,
nb_quad_per_element),
make_view(quadrature_points_coordinates, spatial_dimension,
nb_quad_per_element))) {
auto element = std::get<0>(data);
/// matrix to store the matrix inversion result
auto & inv_quad_coord_matrix = std::get<1>(data);
/// matrix to store the interpolation points coordinates
/// compatible with these functions
auto & inv_points_coord_matrix = std::get<2>(data);
/// matrix containing the quadrature points coordinates
auto & quad_coords = std::get<3>(data);
/// matrix containing the interpolation points coordinates
auto && points_coords = points_coords_begin[element];
/// insert the quad coordinates in a matrix compatible with the
/// interpolation
buildElementalFieldInterpolationMatrix<type>(quad_coords,
quad_coord_matrix);
/// invert the interpolation matrix
inv_quad_coord_matrix = quad_coord_matrix.inverse();
/// insert the quad coordinates in a matrix compatible with the
/// interpolation
buildElementalFieldInterpolationMatrix<type>(points_coords,
inv_points_coord_matrix);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void ShapeFunctions::initElementalFieldInterpolationFromIntegrationPoints(
const ElementTypeMapArray<Real> & interpolation_points_coordinates,
ElementTypeMapArray<Real> & interpolation_points_coordinates_matrices,
ElementTypeMapArray<Real> & quad_points_coordinates_inv_matrices,
const ElementTypeMapArray<Real> & quadrature_points_coordinates,
const ElementTypeMapArray<Idx> * element_filter) const {
AKANTU_DEBUG_IN();
auto spatial_dimension = this->mesh.getSpatialDimension();
for (auto ghost_type : ghost_types) {
auto types_iterable = mesh.elementTypes(spatial_dimension, ghost_type);
if (element_filter != nullptr) {
types_iterable =
element_filter->elementTypes(spatial_dimension, ghost_type);
}
for (auto type : types_iterable) {
auto nb_element = mesh.getNbElement(type, ghost_type);
if (nb_element == 0) {
continue;
}
const Array<Idx> * elem_filter;
if (element_filter != nullptr) {
elem_filter = &((*element_filter)(type, ghost_type));
} else {
elem_filter = &(empty_filter);
}
tuple_dispatch<ElementTypes_t<_ek_regular>>(
[&](auto && enum_type) {
constexpr ElementType type = aka::decay_v<decltype(enum_type)>;
this->initElementalFieldInterpolationFromIntegrationPoints<type>(
interpolation_points_coordinates(type, ghost_type),
interpolation_points_coordinates_matrices,
quad_points_coordinates_inv_matrices,
quadrature_points_coordinates(type, ghost_type), ghost_type,
*elem_filter);
},
type);
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void ShapeFunctions::interpolateElementalFieldFromIntegrationPoints(
const ElementTypeMapArray<Real> & field,
const ElementTypeMapArray<Real> & interpolation_points_coordinates_matrices,
const ElementTypeMapArray<Real> & quad_points_coordinates_inv_matrices,
ElementTypeMapArray<Real> & result, GhostType ghost_type,
const ElementTypeMapArray<Idx> * element_filter) const {
AKANTU_DEBUG_IN();
auto spatial_dimension = this->mesh.getSpatialDimension();
auto types_iterable = mesh.elementTypes(spatial_dimension, ghost_type);
if (element_filter != nullptr) {
types_iterable =
element_filter->elementTypes(spatial_dimension, ghost_type);
}
for (auto type : types_iterable) {
auto nb_element = mesh.getNbElement(type, ghost_type);
if (nb_element == 0) {
continue;
}
const Array<Idx> * elem_filter;
if (element_filter != nullptr) {
elem_filter = &((*element_filter)(type, ghost_type));
} else {
elem_filter = &(empty_filter);
}
tuple_dispatch<ElementTypes_t<_ek_regular>>(
[&](auto && enum_type) {
constexpr ElementType type = aka::decay_v<decltype(enum_type)>;
this->interpolateElementalFieldFromIntegrationPoints<type>(
field(type, ghost_type),
interpolation_points_coordinates_matrices(type, ghost_type),
quad_points_coordinates_inv_matrices(type, ghost_type), result,
ghost_type, *elem_filter);
},
type);
}
AKANTU_DEBUG_OUT();
}
} // namespace akantu

Event Timeline