Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94983669
phase_field_model.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 11, 22:45
Size
24 KB
Mime Type
text/x-c
Expires
Fri, Dec 13, 22:45 (2 d)
Engine
blob
Format
Raw Data
Handle
22908015
Attached To
rAKA akantu
phase_field_model.cc
View Options
/**
* Copyright (©) 2018-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "phase_field_model.hh"
#include "aka_common.hh"
#include "dumpable_inline_impl.hh"
#include "element_synchronizer.hh"
#include "fe_engine_template.hh"
#include "generalized_trapezoidal.hh"
#include "group_manager_inline_impl.hh"
#include "integrator_gauss.hh"
#include "mesh.hh"
#include "parser.hh"
#include "shape_lagrange.hh"
/* -------------------------------------------------------------------------- */
#include "dumper_element_partition.hh"
#include "dumper_elemental_field.hh"
#include "dumper_internal_material_field.hh"
#include "dumper_iohelper_paraview.hh"
#include <utility>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
PhaseFieldModel
::
PhaseFieldModel
(
Mesh
&
mesh
,
Int
dim
,
const
ID
&
id
,
std
::
shared_ptr
<
DOFManager
>
dof_manager
,
ModelType
model_type
)
:
Model
(
mesh
,
model_type
,
dim
,
id
),
phasefield_index
(
"phasefield index"
,
id
),
phasefield_local_numbering
(
"phasefield local numbering"
,
id
)
{
AKANTU_DEBUG_IN
();
this
->
initDOFManager
(
std
::
move
(
dof_manager
));
this
->
registerFEEngineObject
<
FEEngineType
>
(
"PhaseFieldFEEngine"
,
mesh
,
Model
::
spatial_dimension
);
this
->
mesh
.
registerDumper
<
DumperParaview
>
(
"phase_field"
,
id
,
true
);
this
->
mesh
.
addDumpMesh
(
mesh
,
Model
::
spatial_dimension
,
_not_ghost
,
_ek_regular
);
phasefield_selector
=
std
::
make_shared
<
DefaultPhaseFieldSelector
>
(
phasefield_index
);
this
->
registerDataAccessor
(
*
this
);
if
(
this
->
mesh
.
isDistributed
())
{
auto
&
synchronizer
=
this
->
mesh
.
getElementSynchronizer
();
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_phasefield_id
);
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_pfm_damage
);
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_for_dump
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
PhaseFieldModel
::~
PhaseFieldModel
()
=
default
;
/* -------------------------------------------------------------------------- */
MatrixType
PhaseFieldModel
::
getMatrixType
(
const
ID
&
matrix_id
)
const
{
if
(
matrix_id
==
"K"
)
{
return
_symmetric
;
}
return
_mt_not_defined
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
initModel
()
{
auto
&
fem
=
this
->
getFEEngine
();
fem
.
initShapeFunctions
(
_not_ghost
);
fem
.
initShapeFunctions
(
_ghost
);
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
initFullImpl
(
const
ModelOptions
&
options
)
{
phasefield_index
.
initialize
(
mesh
,
_element_kind
=
_ek_not_defined
,
_default_value
=
Idx
(
-
1
),
_with_nb_element
=
true
);
phasefield_local_numbering
.
initialize
(
mesh
,
_element_kind
=
_ek_not_defined
,
_with_nb_element
=
true
);
Model
::
initFullImpl
(
options
);
// initialize the phasefields
if
(
!
this
->
parser
.
getLastParsedFile
().
empty
())
{
this
->
instantiatePhaseFields
();
this
->
initPhaseFields
();
}
this
->
initBC
(
*
this
,
*
damage
,
*
external_force
);
}
/* -------------------------------------------------------------------------- */
PhaseField
&
PhaseFieldModel
::
registerNewPhaseField
(
const
ParserSection
&
section
)
{
std
::
string
phase_name
;
std
::
string
phase_type
=
section
.
getName
();
std
::
string
opt_param
=
section
.
getOption
();
try
{
std
::
string
tmp
=
section
.
getParameter
(
"name"
);
phase_name
=
tmp
;
/** this can seam weird, but there is an ambiguous
* operator overload that i couldn't solve. @todo remove
* the weirdness of this code
*/
}
catch
(
debug
::
Exception
&
)
{
AKANTU_ERROR
(
"A phasefield of type
\'
"
<<
phase_type
<<
"
\'
in the input file has been defined without a name!"
);
}
PhaseField
&
phase
=
this
->
registerNewPhaseField
(
phase_name
,
phase_type
,
opt_param
);
phase
.
parseSection
(
section
);
return
phase
;
}
/* -------------------------------------------------------------------------- */
PhaseField
&
PhaseFieldModel
::
registerNewPhaseField
(
const
ID
&
phase_name
,
const
ID
&
phase_type
,
const
ID
&
opt_param
)
{
AKANTU_DEBUG_ASSERT
(
phasefields_names_to_id
.
find
(
phase_name
)
==
phasefields_names_to_id
.
end
(),
"A phasefield with this name '"
<<
phase_name
<<
"' has already been registered. "
<<
"Please use unique names for phasefields"
);
Int
phase_count
=
phasefields
.
size
();
phasefields_names_to_id
[
phase_name
]
=
phase_count
;
std
::
stringstream
sstr_phase
;
sstr_phase
<<
this
->
id
<<
":"
<<
phase_count
<<
":"
<<
phase_type
;
ID
mat_id
=
sstr_phase
.
str
();
std
::
unique_ptr
<
PhaseField
>
phase
=
PhaseFieldFactory
::
getInstance
().
allocate
(
phase_type
,
opt_param
,
*
this
,
mat_id
);
phasefields
.
push_back
(
std
::
move
(
phase
));
return
*
(
phasefields
.
back
());
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
instantiatePhaseFields
()
{
ParserSection
model_section
;
bool
is_empty
;
std
::
tie
(
model_section
,
is_empty
)
=
this
->
getParserSection
();
if
(
not
is_empty
)
{
auto
model_phasefields
=
model_section
.
getSubSections
(
ParserType
::
_phasefield
);
for
(
const
auto
&
section
:
model_phasefields
)
{
this
->
registerNewPhaseField
(
section
);
}
}
auto
sub_sections
=
this
->
parser
.
getSubSections
(
ParserType
::
_phasefield
);
for
(
const
auto
&
section
:
sub_sections
)
{
this
->
registerNewPhaseField
(
section
);
}
if
(
phasefields
.
empty
())
{
AKANTU_EXCEPTION
(
"No phasefields where instantiated for the model"
<<
getID
());
}
are_phasefields_instantiated
=
true
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
initPhaseFields
()
{
AKANTU_DEBUG_ASSERT
(
phasefields
.
size
()
!=
0
,
"No phasefield to initialize !"
);
if
(
!
are_phasefields_instantiated
)
{
instantiatePhaseFields
();
}
this
->
assignPhaseFieldToElements
();
for
(
auto
&
phasefield
:
phasefields
)
{
/// init internals properties
phasefield
->
initPhaseField
();
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assignPhaseFieldToElements
(
const
ElementTypeMapArray
<
Idx
>
*
filter
)
{
for_each_element
(
mesh
,
[
&
](
auto
&&
element
)
{
Int
phase_index
=
(
*
phasefield_selector
)(
element
);
AKANTU_DEBUG_ASSERT
(
phase_index
<
Int
(
phasefields
.
size
()),
"The phasefield selector returned an index that does not exists"
);
phasefield_index
(
element
)
=
phase_index
;
},
_element_filter
=
filter
,
_ghost_type
=
_not_ghost
);
for_each_element
(
mesh
,
[
&
](
auto
&&
element
)
{
auto
phase_index
=
phasefield_index
(
element
);
auto
index
=
phasefields
[
phase_index
]
->
addElement
(
element
);
phasefield_local_numbering
(
element
)
=
index
;
},
_element_filter
=
filter
,
_ghost_type
=
_not_ghost
);
// synchronize the element phasefield arrays
this
->
synchronize
(
SynchronizationTag
::
_phasefield_id
);
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
{
this
->
assembleStiffnessMatrix
();
}
else
{
AKANTU_ERROR
(
"Unknown Matrix ID for PhaseFieldModel : "
<<
matrix_id
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
predictor
()
{
// AKANTU_TO_IMPLEMENT();
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
corrector
()
{
// AKANTU_TO_IMPLEMENT();
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
initSolver
(
TimeStepSolverType
time_step_solver_type
,
NonLinearSolverType
/*unused*/
)
{
DOFManager
&
dof_manager
=
this
->
getDOFManager
();
this
->
allocNodalField
(
this
->
damage
,
1
,
"damage"
);
this
->
allocNodalField
(
this
->
external_force
,
1
,
"external_force"
);
this
->
allocNodalField
(
this
->
internal_force
,
1
,
"internal_force"
);
this
->
allocNodalField
(
this
->
blocked_dofs
,
1
,
"blocked_dofs"
);
this
->
allocNodalField
(
this
->
previous_damage
,
1
,
"previous_damage"
);
if
(
!
dof_manager
.
hasDOFs
(
"damage"
))
{
dof_manager
.
registerDOFs
(
"damage"
,
*
this
->
damage
,
_dst_nodal
);
dof_manager
.
registerBlockedDOFs
(
"damage"
,
*
this
->
blocked_dofs
);
dof_manager
.
registerDOFsPrevious
(
"damage"
,
*
this
->
previous_damage
);
}
if
(
time_step_solver_type
==
TimeStepSolverType
::
_dynamic
)
{
AKANTU_TO_IMPLEMENT
();
}
}
/* -------------------------------------------------------------------------- */
FEEngine
&
PhaseFieldModel
::
getFEEngineBoundary
(
const
ID
&
name
)
{
return
dynamic_cast
<
FEEngine
&>
(
getFEEngineClassBoundary
<
FEEngineType
>
(
name
));
}
/* -------------------------------------------------------------------------- */
TimeStepSolverType
PhaseFieldModel
::
getDefaultSolverType
()
const
{
return
TimeStepSolverType
::
_static
;
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
ID
,
TimeStepSolverType
>
PhaseFieldModel
::
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
{
switch
(
method
)
{
case
_explicit_lumped_mass:
{
return
std
::
make_tuple
(
"explicit_lumped"
,
TimeStepSolverType
::
_dynamic_lumped
);
}
case
_explicit_consistent_mass:
{
return
std
::
make_tuple
(
"explicit"
,
TimeStepSolverType
::
_dynamic
);
}
case
_static:
{
return
std
::
make_tuple
(
"static"
,
TimeStepSolverType
::
_static
);
}
case
_implicit_dynamic:
{
return
std
::
make_tuple
(
"implicit"
,
TimeStepSolverType
::
_dynamic
);
}
default
:
return
std
::
make_tuple
(
"unknown"
,
TimeStepSolverType
::
_not_defined
);
}
}
/* -------------------------------------------------------------------------- */
ModelSolverOptions
PhaseFieldModel
::
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
{
ModelSolverOptions
options
;
switch
(
type
)
{
case
TimeStepSolverType
::
_dynamic_lumped:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_lumped
;
options
.
integration_scheme_type
[
"damage"
]
=
IntegrationSchemeType
::
_central_difference
;
options
.
solution_type
[
"damage"
]
=
IntegrationScheme
::
_acceleration
;
break
;
}
case
TimeStepSolverType
::
_static:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_newton_raphson
;
options
.
integration_scheme_type
[
"damage"
]
=
IntegrationSchemeType
::
_pseudo_time
;
options
.
solution_type
[
"damage"
]
=
IntegrationScheme
::
_not_defined
;
break
;
}
case
TimeStepSolverType
::
_dynamic:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_newton_raphson
;
options
.
integration_scheme_type
[
"damage"
]
=
IntegrationSchemeType
::
_backward_euler
;
options
.
solution_type
[
"damage"
]
=
IntegrationScheme
::
_damage
;
break
;
}
default
:
AKANTU_EXCEPTION
(
type
<<
" is not a valid time step solver type"
);
}
return
options
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseFieldModel
::
getEnergy
()
{
AKANTU_DEBUG_IN
();
Real
energy
=
0.
;
for
(
auto
&
phasefield
:
phasefields
)
{
energy
+=
phasefield
->
getEnergy
();
}
/// reduction sum over all processors
mesh
.
getCommunicator
().
allReduce
(
energy
,
SynchronizerOperation
::
_sum
);
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseFieldModel
::
getEnergy
(
ElementType
type
,
Idx
index
)
{
AKANTU_DEBUG_IN
();
Idx
phase_index
=
this
->
phasefield_index
(
type
,
_not_ghost
)(
index
);
Idx
phase_loc_num
=
this
->
phasefield_local_numbering
(
type
,
_not_ghost
)(
index
);
Real
energy
=
this
->
phasefields
[
phase_index
]
->
getEnergy
(
Element
{
type
,
phase_loc_num
,
_not_ghost
});
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseFieldModel
::
getEnergy
(
const
ID
&
group_id
)
{
auto
&&
group
=
mesh
.
getElementGroup
(
group_id
);
auto
energy
=
0.
;
for
(
auto
&&
type
:
group
.
elementTypes
())
{
for
(
auto
el
:
group
.
getElementsIterable
(
type
))
{
energy
+=
getEnergy
(
el
);
}
}
/// reduction sum over all processors
mesh
.
getCommunicator
().
allReduce
(
energy
,
SynchronizerOperation
::
_sum
);
return
energy
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
beforeSolveStep
()
{
for
(
auto
&
phasefield
:
phasefields
)
{
phasefield
->
beforeSolveStep
();
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
afterSolveStep
(
bool
converged
)
{
if
(
not
converged
)
{
return
;
}
for
(
auto
&&
values
:
zip
(
*
damage
,
*
previous_damage
))
{
auto
&
dam
=
std
::
get
<
0
>
(
values
);
auto
&
prev_dam
=
std
::
get
<
1
>
(
values
);
prev_dam
=
dam
;
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleStiffnessMatrix
()
{
AKANTU_DEBUG_INFO
(
"Assemble the new stiffness matrix"
);
if
(
!
this
->
getDOFManager
().
hasMatrix
(
"K"
))
{
this
->
getDOFManager
().
getNewMatrix
(
"K"
,
getMatrixType
(
"K"
));
}
this
->
getDOFManager
().
zeroMatrix
(
"K"
);
for
(
auto
&
phasefield
:
phasefields
)
{
phasefield
->
assembleStiffnessMatrix
(
_not_ghost
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleResidual
()
{
this
->
assembleInternalForces
();
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
*
this
->
external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
*
this
->
internal_force
,
1
);
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleInternalForces
()
{
AKANTU_DEBUG_INFO
(
"Assemble the internal forces"
);
this
->
internal_force
->
zero
();
this
->
synchronize
(
SynchronizationTag
::
_pfm_damage
);
for
(
auto
&
phasefield
:
phasefields
)
{
phasefield
->
computeAllDrivingForces
(
_not_ghost
);
}
// assemble the forces due to local driving forces
AKANTU_DEBUG_INFO
(
"Assemble residual for local elements"
);
for
(
auto
&
phasefield
:
phasefields
)
{
phasefield
->
assembleInternalForces
(
_not_ghost
);
}
// assemble the forces due to local driving forces
AKANTU_DEBUG_INFO
(
"Assemble residual for ghost elements"
);
for
(
auto
&
phasefield
:
phasefields
)
{
phasefield
->
assembleInternalForces
(
_ghost
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleLumpedMatrix
(
const
ID
&
/*matrix_id*/
)
{}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
setTimeStep
(
Real
time_step
,
const
ID
&
solver_id
)
{
Model
::
setTimeStep
(
time_step
,
solver_id
);
this
->
mesh
.
getDumper
(
"phase_field"
).
setTimeStep
(
time_step
);
}
/* -------------------------------------------------------------------------- */
Int
PhaseFieldModel
::
getNbData
(
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
{
Int
size
=
0
;
Int
nb_nodes_per_element
=
0
;
for
(
const
Element
&
el
:
elements
)
{
nb_nodes_per_element
+=
Mesh
::
getNbNodesPerElement
(
el
.
type
);
}
switch
(
tag
)
{
case
SynchronizationTag
::
_phasefield_id:
{
size
+=
elements
.
size
()
*
sizeof
(
Int
);
break
;
}
case
SynchronizationTag
::
_for_dump:
{
// damage
size
+=
nb_nodes_per_element
*
sizeof
(
Real
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
size
+=
nb_nodes_per_element
*
sizeof
(
Real
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
return
size
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
{
switch
(
tag
)
{
case
SynchronizationTag
::
_phasefield_id:
{
packElementalDataHelper
(
phasefield_index
,
buffer
,
elements
,
false
,
getFEEngine
());
break
;
}
case
SynchronizationTag
::
_for_dump:
{
packNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
packNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
{
AKANTU_DEBUG_IN
();
switch
(
tag
)
{
case
SynchronizationTag
::
_phasefield_id:
{
for
(
auto
&&
element
:
elements
)
{
Idx
recv_phase_index
;
buffer
>>
recv_phase_index
;
Idx
&
phase_index
=
phasefield_index
(
element
);
if
(
phase_index
!=
Idx
(
-
1
))
{
continue
;
}
// add ghosts element to the correct phasefield
phase_index
=
recv_phase_index
;
Idx
index
=
phasefields
[
phase_index
]
->
addElement
(
element
);
phasefield_local_numbering
(
element
)
=
index
;
}
break
;
}
case
SynchronizationTag
::
_for_dump:
{
unpackNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
unpackNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Int
PhaseFieldModel
::
getNbData
(
const
Array
<
Idx
>
&
indexes
,
const
SynchronizationTag
&
tag
)
const
{
Int
size
=
0
;
Int
nb_nodes
=
indexes
.
size
();
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
size
+=
nb_nodes
*
sizeof
(
Real
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
size
+=
nb_nodes
*
sizeof
(
Real
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
return
size
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Idx
>
&
indexes
,
const
SynchronizationTag
&
tag
)
const
{
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
packDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
packDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Idx
>
&
indexes
,
const
SynchronizationTag
&
tag
)
{
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
unpackDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
unpackDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
PhaseFieldModel
::
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
/*unused*/
)
{
std
::
map
<
std
::
string
,
Array
<
bool
>
*>
uint_nodal_fields
;
uint_nodal_fields
[
"blocked_dofs"
]
=
blocked_dofs
.
get
();
return
mesh
.
createNodalField
(
uint_nodal_fields
[
field_name
],
group_name
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
PhaseFieldModel
::
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
/*unused*/
)
{
std
::
map
<
std
::
string
,
Array
<
Real
>
*>
real_nodal_fields
;
real_nodal_fields
[
"damage"
]
=
damage
.
get
();
real_nodal_fields
[
"external_force"
]
=
external_force
.
get
();
real_nodal_fields
[
"internal_force"
]
=
internal_force
.
get
();
return
mesh
.
createNodalField
(
real_nodal_fields
[
field_name
],
group_name
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
PhaseFieldModel
::
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
/*unused*/
,
Int
/*unused*/
,
ElementKind
element_kind
)
{
if
(
field_name
==
"partitions"
)
{
return
mesh
.
createElementalField
<
Int
,
dumpers
::
ElementPartitionField
>
(
mesh
.
getConnectivities
(),
group_name
,
this
->
spatial_dimension
,
element_kind
);
}
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
ElementTypeMapArray
<
Real
>
&
PhaseFieldModel
::
flattenInternal
(
const
std
::
string
&
field_name
,
ElementKind
kind
,
const
GhostType
ghost_type
)
{
auto
key
=
std
::
make_pair
(
field_name
,
kind
);
ElementTypeMapArray
<
Real
>
*
internal_flat
;
auto
it
=
this
->
registered_internals
.
find
(
key
);
if
(
it
==
this
->
registered_internals
.
end
())
{
auto
internal
=
std
::
make_unique
<
ElementTypeMapArray
<
Real
>>
(
field_name
,
this
->
id
);
internal_flat
=
internal
.
get
();
this
->
registered_internals
[
key
]
=
std
::
move
(
internal
);
}
else
{
internal_flat
=
it
->
second
.
get
();
}
for
(
auto
type
:
mesh
.
elementTypes
(
Model
::
spatial_dimension
,
ghost_type
,
kind
))
{
if
(
internal_flat
->
exists
(
type
,
ghost_type
))
{
auto
&
internal
=
(
*
internal_flat
)(
type
,
ghost_type
);
internal
.
resize
(
0
);
}
}
for
(
auto
&
phasefield
:
phasefields
)
{
if
(
phasefield
->
isInternal
<
Real
>
(
field_name
,
kind
))
{
phasefield
->
flattenInternal
(
field_name
,
*
internal_flat
,
ghost_type
,
kind
);
}
}
return
*
internal_flat
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
inflateInternal
(
const
std
::
string
&
field_name
,
const
ElementTypeMapArray
<
Real
>
&
field
,
ElementKind
kind
,
GhostType
ghost_type
)
{
for
(
auto
&
phasefield
:
phasefields
)
{
if
(
phasefield
->
isInternal
<
Real
>
(
field_name
,
kind
))
{
phasefield
->
inflateInternal
(
field_name
,
field
,
ghost_type
,
kind
);
}
else
{
AKANTU_ERROR
(
"A internal of name
\'
"
<<
field_name
<<
"
\'
has not been defined in the phasefield"
);
}
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
(
indent
,
AKANTU_INDENT
);
stream
<<
space
<<
"Phase Field Model ["
<<
std
::
endl
;
stream
<<
space
<<
" + id : "
<<
id
<<
std
::
endl
;
stream
<<
space
<<
" + spatial dimension : "
<<
Model
::
spatial_dimension
<<
std
::
endl
;
stream
<<
space
<<
" + fem ["
<<
std
::
endl
;
getFEEngine
().
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
" + nodals information ["
<<
std
::
endl
;
damage
->
printself
(
stream
,
indent
+
2
);
external_force
->
printself
(
stream
,
indent
+
2
);
internal_force
->
printself
(
stream
,
indent
+
2
);
blocked_dofs
->
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
" + phasefield information ["
<<
std
::
endl
;
stream
<<
space
<<
AKANTU_INDENT
<<
"]"
<<
std
::
endl
;
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
}
// namespace akantu
Event Timeline
Log In to Comment