Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F95058865
phasefield.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Dec 12, 13:10
Size
14 KB
Mime Type
text/x-c
Expires
Sat, Dec 14, 13:10 (2 d)
Engine
blob
Format
Raw Data
Handle
22921051
Attached To
rAKA akantu
phasefield.cc
View Options
/**
* Copyright (©) 2020-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "phasefield.hh"
#include "aka_common.hh"
#include "phase_field_model.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
PhaseField::PhaseField(PhaseFieldModel & model, const ID & id)
: Parsable(ParserType::_phasefield, id), id(id), fem(model.getFEEngine()),
model(model), g_c("g_c", *this),
spatial_dimension(this->model.getSpatialDimension()),
element_filter("element_filter", id), damage_on_qpoints("damage", *this),
gradd("grad_d", *this), phi("phi", *this), strain("strain", *this),
driving_force("driving_force", *this),
driving_energy("driving_energy", *this),
damage_energy("damage_energy", *this),
damage_energy_density("damage_energy_density", *this),
dissipated_energy("dissipated_energy", *this) {
AKANTU_DEBUG_IN();
/// for each connectivity types allocate the element filer array of the
/// material
element_filter.initialize(model.getMesh(),
_spatial_dimension = spatial_dimension,
_element_kind = _ek_regular);
this->initialize();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
PhaseField::PhaseField(PhaseFieldModel & model, Int dim, const Mesh & mesh,
FEEngine & fe_engine, const ID & id)
: Parsable(ParserType::_phasefield, id), id(id), fem(fe_engine),
model(model), g_c("g_c", *this),
spatial_dimension(this->model.getSpatialDimension()),
element_filter("element_filter", id),
damage_on_qpoints("damage", *this, dim, fe_engine, this->element_filter),
gradd("grad_d", *this, dim, fe_engine, this->element_filter),
phi("phi", *this, dim, fe_engine, this->element_filter),
strain("strain", *this, dim, fe_engine, this->element_filter),
driving_force("driving_force", *this, dim, fe_engine,
this->element_filter),
driving_energy("driving_energy", *this, dim, fe_engine,
this->element_filter),
damage_energy("damage_energy", *this, dim, fe_engine,
this->element_filter),
damage_energy_density("damage_energy_density", *this, dim, fe_engine,
this->element_filter),
dissipated_energy("dissipated_energy", *this, dim, fe_engine,
this->element_filter) {
AKANTU_DEBUG_IN();
/// for each connectivity types allocate the element filer array of the
/// material
element_filter.initialize(mesh, _spatial_dimension = spatial_dimension,
_element_kind = _ek_regular);
this->initialize();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
PhaseField::~PhaseField() = default;
/* -------------------------------------------------------------------------- */
void PhaseField::initialize() {
registerParam("name", name, std::string(), _pat_parsable | _pat_readable);
registerParam("l0", l0, Real(0.), _pat_parsable | _pat_readable,
"length scale parameter");
registerParam("gc", g_c, _pat_parsable | _pat_readable,
"critical local fracture energy density");
registerParam("E", E, _pat_parsable | _pat_readable, "Young's modulus");
registerParam("nu", nu, _pat_parsable | _pat_readable, "Poisson ratio");
damage_on_qpoints.initialize(1);
phi.initialize(1);
driving_force.initialize(1);
driving_energy.initialize(spatial_dimension);
gradd.initialize(spatial_dimension);
g_c.initialize(1);
strain.initialize(spatial_dimension * spatial_dimension);
dissipated_energy.initialize(1);
damage_energy_density.initialize(1);
damage_energy.initialize(spatial_dimension * spatial_dimension);
}
/* -------------------------------------------------------------------------- */
void PhaseField::initPhaseField() {
AKANTU_DEBUG_IN();
this->phi.initializeHistory();
this->resizeInternals();
updateInternalParameters();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::resizeInternals() {
AKANTU_DEBUG_IN();
for (auto it = internal_vectors_real.begin();
it != internal_vectors_real.end(); ++it) {
it->second->resize();
}
for (auto it = internal_vectors_int.begin(); it != internal_vectors_int.end();
++it) {
it->second->resize();
}
for (auto it = internal_vectors_bool.begin();
it != internal_vectors_bool.end(); ++it) {
it->second->resize();
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::updateInternalParameters() {
this->lambda = this->nu * this->E / ((1 + this->nu) * (1 - 2 * this->nu));
this->mu = this->E / (2 * (1 + this->nu));
}
/* -------------------------------------------------------------------------- */
void PhaseField::computeAllDrivingForces(GhostType ghost_type) {
AKANTU_DEBUG_IN();
Int spatial_dimension = model.getSpatialDimension();
auto & damage = model.getDamage();
for (const auto & type :
element_filter.elementTypes(spatial_dimension, ghost_type)) {
auto & elem_filter = element_filter(type, ghost_type);
if (elem_filter.empty()) {
continue;
}
// compute the damage on quadrature points
auto & damage_interpolated = damage_on_qpoints(type, ghost_type);
fem.interpolateOnIntegrationPoints(damage, damage_interpolated, 1, type,
ghost_type);
auto & gradd_vect = gradd(type, _not_ghost);
/// compute @f$\nabla u@f$
fem.gradientOnIntegrationPoints(damage, gradd_vect, 1, type, ghost_type,
elem_filter);
computeDrivingForce(type, ghost_type);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::assembleInternalForces(GhostType ghost_type) {
AKANTU_DEBUG_IN();
Array<Real> & internal_force = model.getInternalForce();
for (auto type : element_filter.elementTypes(_ghost_type = ghost_type)) {
auto & elem_filter = element_filter(type, ghost_type);
if (elem_filter.empty()) {
continue;
}
auto nb_element = elem_filter.size();
auto nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
auto nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type);
auto & driving_force_vect = driving_force(type, ghost_type);
Array<Real> nt_driving_force(nb_quadrature_points, nb_nodes_per_element);
fem.computeNtb(driving_force_vect, nt_driving_force, type, ghost_type,
elem_filter);
Array<Real> int_nt_driving_force(nb_element * nb_quadrature_points,
nb_nodes_per_element);
fem.integrate(nt_driving_force, int_nt_driving_force, nb_nodes_per_element,
type, ghost_type, elem_filter);
// damage_energy_on_qpoints = gc*l0 = scalar
auto & driving_energy_vect = driving_energy(type, ghost_type);
Array<Real> bt_driving_energy(nb_element * nb_quadrature_points,
nb_nodes_per_element);
fem.computeBtD(driving_energy_vect, bt_driving_energy, type, ghost_type,
elem_filter);
Array<Real> int_bt_driving_energy(nb_element, nb_nodes_per_element);
fem.integrate(bt_driving_energy, int_bt_driving_energy,
nb_nodes_per_element, type, ghost_type, elem_filter);
model.getDOFManager().assembleElementalArrayLocalArray(
int_nt_driving_force, internal_force, type, ghost_type, -1,
elem_filter);
model.getDOFManager().assembleElementalArrayLocalArray(
int_bt_driving_energy, internal_force, type, ghost_type, -1,
elem_filter);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::assembleStiffnessMatrix(GhostType ghost_type) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_INFO("Assemble the new stiffness matrix");
for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) {
auto & elem_filter = element_filter(type, ghost_type);
if (elem_filter.empty()) {
AKANTU_DEBUG_OUT();
return;
}
auto nb_element = elem_filter.size();
auto nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
auto nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type);
auto nt_b_n = std::make_unique<Array<Real>>(
nb_element * nb_quadrature_points,
nb_nodes_per_element * nb_nodes_per_element, "N^t*b*N");
auto bt_d_b = std::make_unique<Array<Real>>(
nb_element * nb_quadrature_points,
nb_nodes_per_element * nb_nodes_per_element, "B^t*D*B");
// damage_energy_density_on_qpoints = gc/l0 + phi = scalar
auto & damage_energy_density_vect = damage_energy_density(type, ghost_type);
// damage_energy_on_qpoints = gc*l0 = scalar
auto & damage_energy_vect = damage_energy(type, ghost_type);
fem.computeBtDB(damage_energy_vect, *bt_d_b, 2, type, ghost_type,
elem_filter);
fem.computeNtbN(damage_energy_density_vect, *nt_b_n, type, ghost_type,
elem_filter);
/// compute @f$ K_{\grad d} = \int_e \mathbf{N}^t * \mathbf{w} *
/// \mathbf{N}@f$
auto K_n = std::make_unique<Array<Real>>(
nb_element, nb_nodes_per_element * nb_nodes_per_element, "K_n");
fem.integrate(*nt_b_n, *K_n, nb_nodes_per_element * nb_nodes_per_element,
type, ghost_type, elem_filter);
model.getDOFManager().assembleElementalMatricesToMatrix(
"K", "damage", *K_n, type, _not_ghost, _symmetric, elem_filter);
/// compute @f$ K_{\grad d} = \int_e \mathbf{B}^t * \mathbf{W} *
/// \mathbf{B}@f$
auto K_b = std::make_unique<Array<Real>>(
nb_element, nb_nodes_per_element * nb_nodes_per_element, "K_b");
fem.integrate(*bt_d_b, *K_b, nb_nodes_per_element * nb_nodes_per_element,
type, ghost_type, elem_filter);
model.getDOFManager().assembleElementalMatricesToMatrix(
"K", "damage", *K_b, type, _not_ghost, _symmetric, elem_filter);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::computeDissipatedEnergyByElements() {
AKANTU_DEBUG_IN();
const Array<Real> & damage = model.getDamage();
for (auto type : element_filter.elementTypes(spatial_dimension, _not_ghost)) {
Array<Idx> & elem_filter = element_filter(type, _not_ghost);
if (elem_filter.empty()) {
continue;
}
Array<Real> & damage_interpolated = damage_on_qpoints(type, _not_ghost);
// compute the damage on quadrature points
fem.interpolateOnIntegrationPoints(damage, damage_interpolated, 1, type,
_not_ghost);
Array<Real> & gradd_vect = gradd(type, _not_ghost);
/// compute @f$\nabla u@f$
fem.gradientOnIntegrationPoints(damage, gradd_vect, 1, type, _not_ghost,
elem_filter);
computeDissipatedEnergy(type);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::computeDissipatedEnergy(ElementType /*unused*/) {
AKANTU_DEBUG_IN();
AKANTU_TO_IMPLEMENT();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Real PhaseField::getEnergy() {
AKANTU_DEBUG_IN();
Real edis = 0.;
computeDissipatedEnergyByElements();
/// integrate the dissipated energy for each type of elements
for (auto type : element_filter.elementTypes(spatial_dimension, _not_ghost)) {
edis += fem.integrate(dissipated_energy(type, _not_ghost), type, _not_ghost,
element_filter(type, _not_ghost));
}
AKANTU_DEBUG_OUT();
return edis;
}
/* -------------------------------------------------------------------------- */
Real PhaseField::getEnergy(ElementType type, Idx index) {
Real edis = 0.;
Vector<Real> edis_on_quad_points(fem.getNbIntegrationPoints(type));
computeDissipatedEnergyByElement(type, index, edis_on_quad_points);
edis = fem.integrate(edis_on_quad_points, Element{type, index, _not_ghost});
return edis;
}
/* -------------------------------------------------------------------------- */
Real PhaseField::getEnergy(const Element & element) {
return getEnergy(element.type, element.element);
}
/* -------------------------------------------------------------------------- */
void PhaseField::beforeSolveStep() {
this->savePreviousState();
this->computeAllDrivingForces(_not_ghost);
}
/* -------------------------------------------------------------------------- */
void PhaseField::afterSolveStep() {}
/* -------------------------------------------------------------------------- */
void PhaseField::savePreviousState() {
AKANTU_DEBUG_IN();
for (auto pair : internal_vectors_real) {
if (pair.second->hasHistory()) {
pair.second->saveCurrentValues();
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void PhaseField::printself(std::ostream & stream, int indent) const {
std::string space(indent, AKANTU_INDENT);
std::string type = getID().substr(getID().find_last_of(':') + 1);
stream << space << "PhaseField Material " << type << " [" << std::endl;
Parsable::printself(stream, indent);
stream << space << "]" << std::endl;
}
} // namespace akantu
Event Timeline
Log In to Comment