Page MenuHomec4science

phasefield.hh
No OneTemporary

File Metadata

Created
Wed, Dec 4, 08:14

phasefield.hh

/**
* Copyright (©) 2020-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "aka_factory.hh"
#include "data_accessor.hh"
#include "integration_point.hh"
#include "parsable.hh"
#include "parser.hh"
/* -------------------------------------------------------------------------- */
#include "internal_field.hh"
#include "random_internal_field.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_PHASEFIELD_HH__
#define __AKANTU_PHASEFIELD_HH__
/* -------------------------------------------------------------------------- */
namespace akantu {
class Model;
class PhaseFieldModel;
class PhaseField;
} // namespace akantu
namespace akantu {
template <typename T>
using InternalPhaseField = InternalFieldTmpl<PhaseField, T>;
template <>
inline void
ParameterTyped<RandomInternalField<Real, InternalPhaseField>>::setAuto(
const ParserParameter & in_param) {
Parameter::setAuto(in_param);
RandomParameter<Real> random_param = in_param;
param.setRandomDistribution(random_param);
}
using PhaseFieldFactory =
Factory<PhaseField, ID, const ID &, PhaseFieldModel &, const ID &>;
class PhaseField : public DataAccessor<Element>, public Parsable {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
PhaseField(const PhaseField & phase) = delete;
PhaseField & operator=(const PhaseField & phase) = delete;
/// Initialize phasefield with defaults
PhaseField(PhaseFieldModel & model, const ID & id = "");
/// Initialize phasefield with custom mesh & fe_engine
PhaseField(PhaseFieldModel & model, Int dim, const Mesh & mesh,
FEEngine & fe_engine, const ID & id = "");
/// Destructor
~PhaseField() override;
protected:
void initialize();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
template <typename T>
void registerInternal(InternalPhaseField<T> & /*vect*/) {
AKANTU_TO_IMPLEMENT();
}
template <typename T>
void unregisterInternal(InternalPhaseField<T> & /*vect*/) {
AKANTU_TO_IMPLEMENT();
}
/// initialize the phasefield computed parameter
virtual void initPhaseField();
///
virtual void beforeSolveStep();
///
virtual void afterSolveStep();
/// assemble the residual for this phasefield
virtual void assembleInternalForces(GhostType ghost_type);
/// assemble the stiffness matrix for this phasefield
virtual void assembleStiffnessMatrix(GhostType ghost_type);
/// compute the driving force for this phasefield
virtual void computeAllDrivingForces(GhostType ghost_type = _not_ghost);
/// save the phi in the phi internal field if needed
virtual void savePreviousState();
/// add an element to the local mesh filter
inline Int addElement(const Element & element);
/// function to print the contain of the class
void printself(std::ostream & stream, int indent = 0) const override;
protected:
/// compute the dissipated energy by element
void computeDissipatedEnergyByElements();
/// add an element to the local mesh filter
inline Int addElement(const ElementType & type, Idx element,
const GhostType & ghost_type);
/// resize the internals arrrays
virtual void resizeInternals();
/// function called to updatet the internal parameters when the
/// modifiable parameters are modified
virtual void updateInternalParameters();
// constitutive law for driving force
virtual void computeDrivingForce(ElementType /* el_type */,
GhostType /* ghost_type */ = _not_ghost) {
AKANTU_TO_IMPLEMENT();
}
/// compute the dissiapted energy
virtual void computeDissipatedEnergy(ElementType el_type);
/// compute the dissipated energy for an element
virtual void
computeDissipatedEnergyByElement(const Element & /*element*/,
Vector<Real> & /*edis_on_quad_points*/) {
AKANTU_TO_IMPLEMENT();
}
/// compute the dissipated energy for an element
virtual void
computeDissipatedEnergyByElement(ElementType /*type*/, Idx /*index*/,
Vector<Real> & /*edis_on_quad_points*/) {
AKANTU_TO_IMPLEMENT();
}
/* ------------------------------------------------------------------------ */
/* DataAccessor inherited members */
/* ------------------------------------------------------------------------ */
public:
inline Int getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) override;
template <typename T>
inline void packElementDataHelper(const ElementTypeMapArray<T> & data_to_pack,
CommunicationBuffer & buffer,
const Array<Element> & elements,
const ID & fem_id = ID()) const;
template <typename T>
inline void unpackElementDataHelper(ElementTypeMapArray<T> & data_to_unpack,
CommunicationBuffer & buffer,
const Array<Element> & elements,
const ID & fem_id = ID());
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
protected:
/// return the damage energyfor the provided element
virtual Real getEnergy(ElementType type, Idx index);
public:
/// return the damage energyfor the subset of elements contained
/// by the phasefield
virtual Real getEnergy();
/// Compute dissipated energy for an individual element
Real getEnergy(const Element & element);
AKANTU_GET_MACRO(Name, name, const std::string &);
AKANTU_GET_MACRO(Model, model, const PhaseFieldModel &)
AKANTU_GET_MACRO(ID, id, const ID &);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Strain, strain, Real);
AKANTU_GET_MACRO(Strain, strain, const ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO_NOT_CONST(Strain, strain, ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Damage, damage_on_qpoints, Real);
AKANTU_GET_MACRO_NOT_CONST(Damage, damage_on_qpoints,
ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO(Damage, damage_on_qpoints,
const ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ElementFilter, element_filter, Idx);
AKANTU_GET_MACRO(ElementFilter, element_filter,
const ElementTypeMapArray<Idx> &);
template <typename T>
const Array<T> & getArray(const ID & id, ElementType type,
GhostType ghost_type = _not_ghost) const;
template <typename T>
Array<T> & getArray(const ID & id, ElementType type,
GhostType ghost_type = _not_ghost);
template <typename T>
const InternalPhaseField<T> & getInternal(const ID & id) const;
template <typename T> InternalPhaseField<T> & getInternal(const ID & id);
template <typename T>
inline bool isInternal(const ID & id, const ElementKind & element_kind) const;
template <typename T> inline void setParam(const ID & param, T value);
inline const Parameter & getParam(const ID & param) const;
template <typename T>
void flattenInternal(const std::string & field_id,
ElementTypeMapArray<T> & internal_flat,
GhostType ghost_type = _not_ghost,
ElementKind element_kind = _ek_not_defined) const;
template <typename T>
void inflateInternal(const std::string & field_id,
const ElementTypeMapArray<T> & field,
GhostType ghost_type = _not_ghost,
ElementKind element_kind = _ek_not_defined);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// boolean to know if the material has been initialized
bool is_init;
std::map<ID, InternalPhaseField<Real> *> internal_vectors_real;
std::map<ID, InternalPhaseField<Int> *> internal_vectors_int;
std::map<ID, InternalPhaseField<bool> *> internal_vectors_bool;
protected:
ID id;
/// Link to the fem object in the model
FEEngine & fem;
/// phasefield name
std::string name;
/// The model to whch the phasefield belong
PhaseFieldModel & model;
/// length scale parameter
Real l0;
/// critical energy release rate
// Real g_c;
RandomInternalField<Real, InternalPhaseField> g_c;
/// Young's modulus
Real E;
/// Poisson ratio
Real nu;
/// Lame's first parameter
Real lambda;
/// Lame's second paramter
Real mu;
/// spatial dimension
Int spatial_dimension;
/// list of element handled by the phasefield
ElementTypeMapArray<Idx> element_filter;
/// damage arrays ordered by element types
InternalPhaseField<Real> damage_on_qpoints;
/// grad_d arrays ordered by element types
InternalPhaseField<Real> gradd;
/// phi arrays ordered by element types
InternalPhaseField<Real> phi;
/// strain arrays ordered by element types
InternalPhaseField<Real> strain;
/// driving force ordered by element types
InternalPhaseField<Real> driving_force;
/// driving energy ordered by element types
InternalPhaseField<Real> driving_energy;
/// damage energy ordered by element types
InternalPhaseField<Real> damage_energy;
/// damage energy density ordered by element types
InternalPhaseField<Real> damage_energy_density;
/// dissipated energy by element
InternalPhaseField<Real> dissipated_energy;
};
/// standard output stream operator
inline std::ostream & operator<<(std::ostream & stream,
const PhaseField & _this) {
_this.printself(stream);
return stream;
}
} // namespace akantu
#include "phasefield_inline_impl.hh"
#include "internal_field_tmpl.hh"
#include "random_internal_field_tmpl.hh"
/* -------------------------------------------------------------------------- */
#define PHASEFIELD_DEFAULT_ALLOCATOR(id, phase_name) \
[](const ID &, PhaseFieldModel & model, \
const ID & id) -> std::unique_ptr<PhaseField> { \
return std::make_unique<phase_name>(model, id); \
}
#define INSTANTIATE_PHASEFIELD(id, phase_name) \
static bool phasefield_is_allocated_##id [[gnu::unused]] = \
PhaseFieldFactory::getInstance().registerAllocator( \
#id, PHASEFIELD_DEFAULT_ALLOCATOR(id, phase_name))
#endif

Event Timeline