Page MenuHomec4science

phasefield_inline_impl.hh
No OneTemporary

File Metadata

Created
Tue, Dec 3, 16:34

phasefield_inline_impl.hh

/**
* @file phasefield_inline_impl.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Fri Jun 19 2020
* @date last modification: Fri Apr 02 2021
*
* @brief Phase field implementation of inline functions
*
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "phase_field_model.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_PHASEFIELD_INLINE_IMPL_HH__
#define __AKANTU_PHASEFIELD_INLINE_IMPL_HH__
namespace akantu {
/* -------------------------------------------------------------------------- */
inline Int PhaseField::addElement(const ElementType & type, Idx element,
const GhostType & ghost_type) {
Array<Int> & el_filter = this->element_filter(type, ghost_type);
el_filter.push_back(element);
return el_filter.size() - 1;
}
/* -------------------------------------------------------------------------- */
inline Int PhaseField::addElement(const Element & element) {
return this->addElement(element.type, element.element, element.ghost_type);
}
/* -------------------------------------------------------------------------- */
template <>
inline void
PhaseField::registerInternal<Real>(InternalPhaseField<Real> & vect) {
internal_vectors_real[vect.getID()] = &vect;
}
template <>
inline void PhaseField::registerInternal<Int>(InternalPhaseField<Int> & vect) {
internal_vectors_int[vect.getID()] = &vect;
}
template <>
inline void
PhaseField::registerInternal<bool>(InternalPhaseField<bool> & vect) {
internal_vectors_bool[vect.getID()] = &vect;
}
/* -------------------------------------------------------------------------- */
template <>
inline void
PhaseField::unregisterInternal<Real>(InternalPhaseField<Real> & vect) {
internal_vectors_real.erase(vect.getID());
}
template <>
inline void
PhaseField::unregisterInternal<Int>(InternalPhaseField<Int> & vect) {
internal_vectors_int.erase(vect.getID());
}
template <>
inline void
PhaseField::unregisterInternal<bool>(InternalPhaseField<bool> & vect) {
internal_vectors_bool.erase(vect.getID());
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline bool PhaseField::isInternal(__attribute__((unused)) const ID & id,
__attribute__((unused))
const ElementKind & element_kind) const {
AKANTU_TO_IMPLEMENT();
}
template <>
inline bool
PhaseField::isInternal<Real>(const ID & id,
const ElementKind & element_kind) const {
auto internal_array = internal_vectors_real.find(this->getID() + ":" + id);
return !(internal_array == internal_vectors_real.end() ||
internal_array->second->getElementKind() != element_kind);
}
/* -------------------------------------------------------------------------- */
template <typename T>
void PhaseField::flattenInternal(const std::string & field_id,
ElementTypeMapArray<T> & internal_flat,
const GhostType ghost_type,
ElementKind element_kind) const {
if (!this->template isInternal<T>(field_id, element_kind)) {
AKANTU_EXCEPTION("Cannot find internal field " << id << " in phasefield "
<< this->name);
}
const InternalPhaseField<T> & internal_field =
this->template getInternal<T>(field_id);
const FEEngine & fe_engine = internal_field.getFEEngine();
const Mesh & mesh = fe_engine.getMesh();
for (auto && type : internal_field.filterTypes(ghost_type)) {
const auto & src_vect = internal_field(type, ghost_type);
const auto & filter = internal_field.getFilter(type, ghost_type);
// total number of elements in the corresponding mesh
Int nb_element_dst = mesh.getNbElement(type, ghost_type);
// number of quadrature points per elem
Int nb_quad_per_elem = fe_engine.getNbIntegrationPoints(type);
// number of data per quadrature point
Int nb_data_per_quad = internal_field.getNbComponent();
if (!internal_flat.exists(type, ghost_type)) {
internal_flat.alloc(nb_element_dst * nb_quad_per_elem, nb_data_per_quad,
type, ghost_type);
}
// number of data per element
Int nb_data = nb_quad_per_elem * nb_data_per_quad;
Array<Real> & dst_vect = internal_flat(type, ghost_type);
dst_vect.resize(nb_element_dst * nb_quad_per_elem);
auto it_dst = make_view(dst_vect, nb_data).begin();
for (auto && data : zip(filter, make_view(src_vect, nb_data))) {
it_dst[std::get<0>(data)] = std::get<1>(data);
}
}
}
/* -------------------------------------------------------------------------- */
template <typename T>
void PhaseField::inflateInternal(const std::string & field_id,
const ElementTypeMapArray<T> & field,
GhostType ghost_type,
ElementKind element_kind) {
if (!this->template isInternal<T>(field_id, element_kind)) {
AKANTU_EXCEPTION("Cannot find internal field " << id << " in phasefield "
<< this->name);
}
InternalPhaseField<T> & internal_field =
this->template getInternal<T>(field_id);
const FEEngine & fe_engine = internal_field.getFEEngine();
for (auto && type : field.elementTypes(spatial_dimension, ghost_type)) {
if (not internal_field.exists(type, ghost_type)) {
continue;
}
const auto & filter = internal_field.getFilter(type, ghost_type);
const auto & src_array = field(type, ghost_type);
auto & dest_array = internal_field(type, ghost_type);
auto nb_quad_per_elem = fe_engine.getNbIntegrationPoints(type);
auto nb_component = src_array.getNbComponent();
AKANTU_DEBUG_ASSERT(
field.size() == fe_engine.getMesh().getNbElement(type, ghost_type) *
nb_quad_per_elem,
"The ElementTypeMapArray to inflate is not of the proper size");
AKANTU_DEBUG_ASSERT(
dest_array.getNbComponent() == nb_component,
"The ElementTypeMapArray has not the proper number of components");
auto src =
make_view(field(type, ghost_type), nb_component, nb_quad_per_elem)
.begin();
for (auto && data :
zip(filter, make_view(dest_array, nb_component, nb_quad_per_elem))) {
std::get<1>(data) = src[std::get<0>(data)];
}
}
}
/* -------------------------------------------------------------------------- */
inline Int PhaseField::getNbData(__attribute__((unused))
const Array<Element> & elements,
__attribute__((unused))
const SynchronizationTag & tag) const {
return 0;
}
/* -------------------------------------------------------------------------- */
inline void PhaseField::packData(__attribute__((unused))
CommunicationBuffer & buffer,
__attribute__((unused))
const Array<Element> & elements,
__attribute__((unused))
const SynchronizationTag & tag) const {}
/* -------------------------------------------------------------------------- */
inline void
PhaseField::unpackData(__attribute__((unused)) CommunicationBuffer & buffer,
__attribute__((unused)) const Array<Element> & elements,
__attribute__((unused)) const SynchronizationTag & tag) {
}
/* -------------------------------------------------------------------------- */
inline const Parameter & PhaseField::getParam(const ID & param) const {
try {
return get(param);
} catch (...) {
AKANTU_EXCEPTION("No parameter " << param << " in the phasefield "
<< getID());
}
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline void PhaseField::packElementDataHelper(
const ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer,
const Array<Element> & elements, const ID & fem_id) const {
DataAccessor::packElementalDataHelper<T>(data_to_pack, buffer, elements, true,
model.getFEEngine(fem_id));
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline void PhaseField::unpackElementDataHelper(
ElementTypeMapArray<T> & data_to_unpack, CommunicationBuffer & buffer,
const Array<Element> & elements, const ID & fem_id) {
DataAccessor::unpackElementalDataHelper<T>(data_to_unpack, buffer, elements,
true, model.getFEEngine(fem_id));
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline const InternalPhaseField<T> &
PhaseField::getInternal([[gnu::unused]] const ID & int_id) const {
AKANTU_TO_IMPLEMENT();
return NULL;
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline InternalPhaseField<T> &
PhaseField::getInternal([[gnu::unused]] const ID & int_id) {
AKANTU_TO_IMPLEMENT();
return NULL;
}
/* -------------------------------------------------------------------------- */
template <>
inline const InternalPhaseField<Real> &
PhaseField::getInternal(const ID & int_id) const {
auto it = internal_vectors_real.find(getID() + ":" + int_id);
if (it == internal_vectors_real.end()) {
AKANTU_SILENT_EXCEPTION("The phasefield "
<< name << "(" << getID()
<< ") does not contain an internal " << int_id
<< " (" << (getID() + ":" + int_id) << ")");
}
return *it->second;
}
/* -------------------------------------------------------------------------- */
template <>
inline InternalPhaseField<Real> & PhaseField::getInternal(const ID & int_id) {
auto it = internal_vectors_real.find(getID() + ":" + int_id);
if (it == internal_vectors_real.end()) {
AKANTU_SILENT_EXCEPTION("The phasefield "
<< name << "(" << getID()
<< ") does not contain an internal " << int_id
<< " (" << (getID() + ":" + int_id) << ")");
}
return *it->second;
}
/* -------------------------------------------------------------------------- */
template <>
inline const InternalPhaseField<Int> &
PhaseField::getInternal(const ID & int_id) const {
auto it = internal_vectors_int.find(getID() + ":" + int_id);
if (it == internal_vectors_int.end()) {
AKANTU_SILENT_EXCEPTION("The phasefield "
<< name << "(" << getID()
<< ") does not contain an internal " << int_id
<< " (" << (getID() + ":" + int_id) << ")");
}
return *it->second;
}
/* -------------------------------------------------------------------------- */
template <>
inline InternalPhaseField<Int> & PhaseField::getInternal(const ID & int_id) {
auto it = internal_vectors_int.find(getID() + ":" + int_id);
if (it == internal_vectors_int.end()) {
AKANTU_SILENT_EXCEPTION("The phasefield "
<< name << "(" << getID()
<< ") does not contain an internal " << int_id
<< " (" << (getID() + ":" + int_id) << ")");
}
return *it->second;
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline const Array<T> & PhaseField::getArray(const ID & vect_id,
ElementType type,
GhostType ghost_type) const {
try {
return this->template getInternal<T>(vect_id)(type, ghost_type);
} catch (debug::Exception & e) {
AKANTU_SILENT_EXCEPTION("The phasefield " << name << "(" << getID()
<< ") does not contain a vector "
<< vect_id << " [" << e << "]");
}
}
/* -------------------------------------------------------------------------- */
template <typename T>
inline Array<T> & PhaseField::getArray(const ID & vect_id, ElementType type,
GhostType ghost_type) {
try {
return this->template getInternal<T>(vect_id)(type, ghost_type);
} catch (debug::Exception & e) {
AKANTU_SILENT_EXCEPTION("The phasefield " << name << "(" << getID()
<< ") does not contain a vector "
<< vect_id << " [" << e << "]");
}
}
} // namespace akantu
#endif

Event Timeline