Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94971152
phasefield_exponential.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 11, 20:14
Size
5 KB
Mime Type
text/x-c
Expires
Fri, Dec 13, 20:14 (2 d)
Engine
blob
Format
Raw Data
Handle
22908079
Attached To
rAKA akantu
phasefield_exponential.cc
View Options
/**
* Copyright (©) 2020-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "phasefield_exponential.hh"
#include "aka_common.hh"
#include <tuple>
namespace
akantu
{
/* -------------------------------------------------------------------------- */
PhaseFieldExponential
::
PhaseFieldExponential
(
PhaseFieldModel
&
model
,
const
ID
&
id
)
:
PhaseField
(
model
,
id
)
{}
/* -------------------------------------------------------------------------- */
void
PhaseFieldExponential
::
updateInternalParameters
()
{
PhaseField
::
updateInternalParameters
();
for
(
const
auto
&
type
:
element_filter
.
elementTypes
(
spatial_dimension
,
_not_ghost
))
{
for
(
auto
&&
tuple
:
zip
(
make_view
(
this
->
damage_energy
(
type
,
_not_ghost
),
spatial_dimension
,
spatial_dimension
),
this
->
g_c
(
type
,
_not_ghost
)))
{
Matrix
<
Real
>
d
=
Matrix
<
Real
>::
Identity
(
spatial_dimension
,
spatial_dimension
)
*
std
::
get
<
1
>
(
tuple
)
*
this
->
l0
;
std
::
get
<
0
>
(
tuple
)
=
d
;
}
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldExponential
::
computeDrivingForce
(
ElementType
el_type
,
GhostType
ghost_type
)
{
for
(
auto
&&
tuple
:
zip
(
this
->
phi
(
el_type
,
ghost_type
),
this
->
phi
.
previous
(
el_type
,
ghost_type
),
this
->
driving_force
(
el_type
,
ghost_type
),
this
->
damage_energy_density
(
el_type
,
ghost_type
),
make_view
(
this
->
strain
(
el_type
,
ghost_type
),
spatial_dimension
,
spatial_dimension
),
this
->
damage_on_qpoints
(
el_type
,
_not_ghost
),
make_view
(
this
->
driving_energy
(
el_type
,
ghost_type
),
spatial_dimension
),
make_view
(
this
->
damage_energy
(
el_type
,
ghost_type
),
spatial_dimension
,
spatial_dimension
),
make_view
(
this
->
gradd
(
el_type
,
ghost_type
),
spatial_dimension
),
this
->
g_c
(
el_type
,
ghost_type
)))
{
auto
&
phi_quad
=
std
::
get
<
0
>
(
tuple
);
auto
&
phi_hist_quad
=
std
::
get
<
1
>
(
tuple
);
auto
&
driving_force_quad
=
std
::
get
<
2
>
(
tuple
);
auto
&
dam_energy_density_quad
=
std
::
get
<
3
>
(
tuple
);
auto
&
strain
=
std
::
get
<
4
>
(
tuple
);
auto
&
dam_on_quad
=
std
::
get
<
5
>
(
tuple
);
auto
&
driving_energy_quad
=
std
::
get
<
6
>
(
tuple
);
auto
&
damage_energy_quad
=
std
::
get
<
7
>
(
tuple
);
auto
&
gradd_quad
=
std
::
get
<
8
>
(
tuple
);
auto
&
g_c_quad
=
std
::
get
<
9
>
(
tuple
);
computePhiOnQuad
(
strain
,
phi_quad
,
phi_hist_quad
);
computeDamageEnergyDensityOnQuad
(
phi_quad
,
dam_energy_density_quad
,
g_c_quad
);
driving_force_quad
=
dam_on_quad
*
dam_energy_density_quad
-
2
*
phi_quad
;
driving_energy_quad
=
damage_energy_quad
*
gradd_quad
;
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldExponential
::
computeDissipatedEnergy
(
ElementType
el_type
)
{
AKANTU_DEBUG_IN
();
for
(
auto
&&
tuple
:
zip
(
this
->
dissipated_energy
(
el_type
,
_not_ghost
),
this
->
damage_on_qpoints
(
el_type
,
_not_ghost
),
make_view
(
this
->
gradd
(
el_type
,
_not_ghost
),
spatial_dimension
),
this
->
g_c
(
el_type
,
_not_ghost
)))
{
this
->
computeDissipatedEnergyOnQuad
(
std
::
get
<
1
>
(
tuple
),
std
::
get
<
2
>
(
tuple
),
std
::
get
<
0
>
(
tuple
),
std
::
get
<
3
>
(
tuple
));
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldExponential
::
computeDissipatedEnergyByElement
(
ElementType
type
,
Idx
index
,
Vector
<
Real
>
&
edis_on_quad_points
)
{
auto
gradd_it
=
this
->
gradd
(
type
).
begin
(
spatial_dimension
);
auto
gradd_end
=
this
->
gradd
(
type
).
begin
(
spatial_dimension
);
auto
damage_it
=
this
->
damage_on_qpoints
(
type
).
begin
();
auto
g_c_it
=
this
->
g_c
(
type
).
begin
();
UInt
nb_quadrature_points
=
fem
.
getNbIntegrationPoints
(
type
);
gradd_it
+=
index
*
nb_quadrature_points
;
gradd_end
+=
(
index
+
1
)
*
nb_quadrature_points
;
damage_it
+=
index
*
nb_quadrature_points
;
g_c_it
+=
index
*
nb_quadrature_points
;
Real
*
edis_quad
=
edis_on_quad_points
.
data
();
for
(;
gradd_it
!=
gradd_end
;
++
gradd_it
,
++
damage_it
,
++
edis_quad
)
{
this
->
computeDissipatedEnergyOnQuad
(
*
damage_it
,
*
gradd_it
,
*
edis_quad
,
*
g_c_it
);
}
}
void
PhaseFieldExponential
::
computeDissipatedEnergyByElement
(
const
Element
&
element
,
Vector
<
Real
>
&
edis_on_quad_points
)
{
computeDissipatedEnergyByElement
(
element
.
type
,
element
.
element
,
edis_on_quad_points
);
}
INSTANTIATE_PHASEFIELD
(
exponential
,
PhaseFieldExponential
);
}
// namespace akantu
Event Timeline
Log In to Comment