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Abstract

Recent breakthroughs in deep reinforcement learning have shown great promise in
mastering challenging problems never before tackled by computer algorithms, such as
the game of Go. These algorithms have also succeeded in learning control strategies
for non-linear dynamical systems without the need for high-fidelity modeling, making
the field very attractive for robotics. This recent rise has been enabled by the high rep-
resentation power of deep neural networks. To leverage this attribute and to compete
in the task of continuous control against systems designed using the well-established
control theory, careful design of the environment and of the agent must be performed.
This work studies this design process applied to the control of a gyroscope. By draw-
ing parallels with control theory, the observation returned by the environment could be
wrongfully chosen to be the same as the classical state vector from the state-space rep-
resentation, leading to non-stationary behaviors. It is also found that using a quadratic
reward function similar to LQR can lead to large steady-state errors. The normalized
error reward function corrects this behavior significantly by encouraging exploration
and thanks to a better scaling of the penalties associated with the initial and steady-
state errors. Hyperparameter search shows that deeper networks are essential to allow
for more abstract learned representations, which are studied with dimensionality re-
duction algorithms. Randomization of the dynamics of the simulation is performed,
which helps the agent learn more robust behaviors.
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1 Introduction

Reinforcement Learning (RL) tackles the challenge of creating agents that can learn to per-
form a task in a dynamic environment, as opposed to following a pre-programmed behavior
in static environments [1]. This field of Artificial Intelligence (AI) has grown in interest in
recent years as it has been able to demonstrate promising and new approaches to solve diffi-
cult sequential decision making problems in fields reaching from natural and social sciences,
to robotics and game control. Recent breakthroughs, that include mastering the game of
Go [2] and outperforming the human Atari benchmark [3], have elevated the expectations
in that field to new heights.

To explain the recent rise of RL one must express the importance of the role that Deep
Learning (DL), and Deep Neural Networks (DNNs) in general, has played. The ground-
breaking results mentioned leveraged the representation and abstraction power of DNNs in
their novel architectures. This of course was enabled thanks to the rise of computing power
available. The generality and flexibility that comes with end-to-end approaches enabled
by Deep RL (DRL), namely the automatic feature engineering and distributed representa-
tional power, has also hampered the understanding of the models trained, which is essential
to identify their strength and weaknesses in a design loop aimed at improving those systems.

The work presented in this report is a case study on State-Of-The-Art (SOTA) DRL al-
gorithms applied to the position control of Quanser ’s 3 DOF Gyroscope [4]. Gyroscopes
can be used as attitude control devices in sea, air and space vehicles. Such technologies can
also be leveraged as sensors to measure orientation and angular velocity. From a control
standpoint, gyroscopes are interesting to study as they offer highly non-linear and coupled
dynamics. Previous semester projects have tackled the challenge of controlling the gyro-
scope through Feedback Linearization (FL) and Multi-Input Multi-Output controller design
(MIMO) [5] as well as using sliding mode control with model parameters identified with
DNNs [6]. Similar research directions can be found in [7] and [8] where efforts are made to
design adaptive controllers that are able to compensate for the modeling errors.

This system is thus chosen as the object of the case study in order to explore the DRL
workflow for control, while maintaining a critical view on the strengths, weaknesses and in-
terpretability of the agents that are trained. Since alleviating the issues posed by modeling
errors in classical controllers is an important issue addressed by the works mentioned above,
this case study also offers an interesting look at alternative ways to design controllers with
an imperfect knowledge of the system at hand. The hierarchical objectives of this project
are:

1. Train an agent that can achieve position tracking on the gyroscope with performance
comparable to existing controllers.

2. Study the adaptability of the agent to the change in parameters and environmental
dynamics.

3. Draw links and maintain a close parallel with classical control theory.

4. Interpret the agent’s learned behavior.
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To achieve these goals, a preliminary study on RL and on SOTA DRL algorithms in par-
ticular is made in Chapter 2 and in Chapter 3. The dynamics of the gyroscope are then
derived and incorporated in a simulation of the environment compatible with standard RL
frameworks in Chapter 4. A study on reward functions is done in Chapter 5 to engineer an
appropriate reward function for the system. An agent is trained on a simplified model of the
gyroscope through hyperparameter search in Chapter 6, followed by domain adaptation of
that agent to make it robust to uncertainty in the model in Chapter 7. Interpretability of the
agents is studied in Chapter 8. Finally, further research directions are outlined in Chapter 9.

Since this report covers both RL and control theory topics, a clarification on analogous
terms needs to be done. An agent is a learning and control algorithm designed using RL,
while a controller will be used to designate a system derived using standard control theory.
An action taken according to a policy in RL is analogous to a control signal or to an input
in standard control theory.
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2 Reinforcement Learning Background

This chapter provides an overview of the essential concepts and notations used in the RL
framework. The quantities describes here will be referred to throughout the whole length of
this report. Most of the theory described here has been extracted from Open AI’s Spinning
Up framework documentation [9] and from R. Sutton and A. Barto’s book [10]. The previous
Master thesis on RL supervised by Paul-Arthur Dreyfus [11] has also served as a great
summary.

2.1 Formalism
RL is an approach to tackle the sequential decision making problem in AI. The standard RL
problem consists of an agent interacting with an environment E: it receives an observation
ot of it’s true state st at time-step t, reacts by taking an action at, and receives a scalar signal
rt called a reward, as shown in Figure 1. The reward gives a feedback to the agent of the
quality of the decision it made. Rewards can be extrinsic (generated by the environment)
or intrinsic (an agent’s motivation to discover for instance).

Figure 1: RL interaction schematic [10]

In the RL framework, the environment is modelled as a Markov Decision Process (MDP)
M which consists of a tuple: M = 〈S,A, T sas′ , γ, r〉 where:

• S is the state space.

• A is the action space.

• T sas′ is the transition dynamics, if the environment is stochastic then T sas′ = P (s′|s, a).

• γ ∈ [0, 1] is the discount factor, that scales the importance of future rewards and is
necessary for convergence of the algorithms: with γ = 0, the agent considers only
immediate rewards.

• r is the reward function r : S ×A → R.
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In a MDP, the transition dynamics satisfy the Markov property: P (st+1|at, st, . . . , a0, s0) =
P (st+1|at, st). This property implies that the present state and corresponding action holds
all the necessary information to predict the future state of the environment.

When the agent has access only to a partial observation ot of the true state st of the
environment, the MDP is known as being partially observable (POMDP). This is the case
for the gyroscope and for most robotic applications, as all necessary information to predict
accurately the future state of the system are not known, most notably the exact dynamical
properties of the system at time-step t. However as an approximation, the standard MDP
framework for RL is used. In the literature, this approximation is often implied and nota-
tions were it would be more appropriate to use ot, such as when it is said that the action is
conditioned by the observation of the environment, it is replaced directly by st even if the
agent does not have direct access to the state but to the observation instead.

In the derivations of the RL background theory, we will use this notation and drop the
use of ot in favor of st, which will be more familiar for the reader. In the rest of the report
however, we will use the more accurate notation ot to define the observation that is returned
by the Gym environment to the agent.

An agent’s behavior is dictated by a policy π(a|s) and defines a probability distribution
over the action space A given the state s:

at ∼ π( · |st)

It can also be a deterministic rule in which case the notation can be substituted to avoid
confusion:

at = µ(st)

The multi-step return Rt is the discounted, accumulated reward overtime starting from
time-step t onwards:

Rt =

∞∑
k=0

γkrt+k

The expected return taking into account the stochasticity in the environment along the
trajectory τ that is taken (the sampling over the transition dynamics is implied and is not
written), and the stochasticity in the policy, is given by:

J(π) = E
τ∼π

[R0|π] = E
τ∼π

[ ∞∑
t=0

γtrt|π

]

The goal of the RL problem is to find the policy π∗ that maximizes the expected return
J(π) of the agent:

π∗ = argmax
π

J(π)
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2.2 Value Functions
Value functions are measures of how good a particular state, or state-action pair, is. They
are at the core of RL techniques as optimization algorithms will make use of them in order
to orient the agent towards decisions that will lead it to states or state-action pairs with
high value.

The two main value functions are the state value function Vπ that measures the value
of a particular state, and the action value function (Q-value function or Q-function) Qπ
that measures the value of a particular state-action pair. From now on, the dependency on
the policy is implied using the superscript π:

V π(s) = E
τ∼π

[Rt|s = st]

Qπ(s, a) = E
τ∼π

[Rt|s = st, a = at]

These functions reflect the expected return the agent will get by starting at state s (or
starting at state s and taking action a), and following the policy π onwards.

In particular, the optimal value functions can be decomposed under the Bellman equation
where the right hand side is the famous Bellman backup operator:

V π(s) = E
a∼π
s′∼P

[r(s, a) + γV π(s′)]

Qπ(s, a) = E
s′∼P

[
r(s, a) + γ E

a′∼π
[Qπ(s′, a′)]

]
In the above formulas, the expectancy is taken by sampling over: s′ ∼ P ( · |s, a), a ∼ π( · |s)
and a′ ∼ π( · |s′). The Bellman equation thus relates the values of consecutive states linked
by an action taken under the policy and transition dynamics.

If the agent behaves according to the optimal policy π∗ of the problem, the value func-
tions yield the optimal value functions:

V ∗(s) = max
π

E
τ∼π

[Rt|s = st]

Q∗(s, a) = max
π

E
τ∼π

[Rt|s = st, a = at]

In particular, the optimal value functions can be decomposed under the Bellman equation:

V ∗(s) = max
a

E
s′∼P

[r(s, a) + γV ∗(s′)]

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
In the above formulas, the expectancy is taken by sampling over: s′ ∼ P ( · |s, a).

Variants of these formulas are used throughout the RL literature and are at the core of
the algorithms, as the value functions can be used to obtain a policy. In fact, if the optimal
value functions are found, the optimal policy can be extracted by acting greedily on them,
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like the max operator above shows. If the transition dynamics are known, the optimal policy
derives from acting greedily with respect to the optimal state value function. The optimal
policy can also be found by acting greedily with respect to the Q-function, without the need
of knowing the transition dynamics:

a∗(s) = argmax
a

Q∗(s, a)

This last point is why many algorithms favor the Q-function. The state value can still be
used as a baseline in the case of unknown dynamics for policy gradient algorithms, which
will be described in Chapter 2.7.

2.3 Model-Based and Model-Free RL
If the full MDP is known, dynamic programming can be used in order to iterate over the
Bellman equation in algorithms called value iteration and policy iteration. Both algorithms
are proved to converge to the optimal value and policy [10]. Those approaches are called
planning.

If the MDP is not known, it can be discovered in methods known as model-based. On
the other hand, model-free approaches assume no knowledge of the model and only learn
from experience, they are thus less sample-efficient as they do not construct a model of the
environment (at least not explicitly). In this project, the goal is to learn a policy that can
assume as little knowledge as possible from the dynamics of the gyroscope in order to study
if the issues posed by the modeling errors in traditional control approaches can be alleviated.
Thus, the project will make use of model-free algorithms, and model-based ones will not be
described in more details.

In model-free problems, the transition dynamics are unknown and thus planning is not
possible, and the Bellman equations cannot be used as such. The two main approaches to
this problem are Monte Carlo methods (MC) and Temporal Difference learning (TD), which
iteratively build estimates of the value functions by interacting with the environment.

2.4 Exploration and Exploitation
Before jumping into the details of model-free approaches, a point has to be made on the
exploration-exploitation trade-off. In fact, model-free algorithms build empirical estimates
of the value functions by exploring the environment and collecting reward information when
encountering states and when performing actions. A way to picture this would be to build
lookup tables for states (when estimating the state value function) or for state-action pairs
(when estimating the Q-function) and to iteratively update the estimates of the value func-
tions when encountering corresponding states or state-action pairs in the lookup tables.

The agent will start off with a random policy and explore the environment. In the case
of dynamic programming (when the full MDP is known), the actions are taken greedily
with respect to the current estimates of the state value function or the Q-function, and fol-
lowing the optimal Bellman equation seen above. It is proved that when the MDP is known,
this approach is guaranteed to converge. In model-free however, the estimates are empiri-
cal and thus suffer from local optimas. The actions taken in the environment thus cannot
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be greedy with respect to the current lookup table, but ε-greedy over the Q-values in order
to allow exploration. Other strategies can be implemented, such as a softmax over Q-values.

Thus, the classic problem of exploitation and exploration arises, and tuning must be done
in order to prevent the agent from falling into a local optima (exploration), while making
sure that it converges (exploitation).

2.5 Monte Carlo and TD learning
Monte Carlo methods do not assume any knowledge of transition dynamics, and construct
estimates of the value functions by relying on empirical means across many trials. By the
law of large numbers the value functions will converge to the true value functions. This
method is highly empirical and can only be applied to episodic tasks (where the infinite sum
is reduced to a finite one).

TD learning, on the other hand, uses the Bellman equation in order to refine the esti-
mate of the value functions across the interactions with the environment, by bootstrapping.
Bootstrapping means estimating value functions at a state or state-action pair based on the
subsequent states encountered. The update rule for TD learning on the state value function
using the Bellman equation is:

V (s)← V (s) + α [r(s, a) + γV (s′)− V (s)]

To estimate the Q-function, there are two categories of update rules:

• SARSA:
Q(s, a)← Q(s, a) + α [r(s, a) + γQ(s′, a′)−Q(s, a)]

• Q-learning:

Q(s, a)← Q(s, a) + α
[
r(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
The difference in those two algorithms is the way the action a′ from the state-action pair
(s′, a′) that is used to bootstrap Q(s, a) is taken. In SARSA algorithms, a′ is taken according
to the current policy π, whereas in Q-learning, a′ is taken by acting ε-greedily with respect
to the Q-values. The key difference is that SARSA is an on-policy update rule whereas
Q-learning is off-policy, meaning that Q(s, a) is bootstrapped to a state-action pair where
the action a′ was not derived using the current policy. The importance of such a distinction
will become important in Chapter 3.1.

2.6 Function Approximations
In Chapter 2.4, the naive approach of the lookup table was mentioned in order to store the
current estimates of the value functions. This approach can work for very simple problems
with a discrete state and action space, but the approach has to be generalized to large or
continuous state and action spaces. In order to do so, function approximators that generalize
from examples, and which are parametrized by φ, can be used. Many function approximators
can be used, such as radial basis function networks, or DNNs tuned by backpropagation in
the case of DRL. These regressors can then be tuned in a supervised learning approach by
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gradient descent on a loss function. When estimating value functions, the loss would then
be the TD learning update rules seen above. For the Q-value, the loss for a set D of collected
transitions (s, a, r, s′), also called the Mean-Squared Bellman Error (MSBE), is:

L(φ,D) = E
(s,a,r,s′)∼D

[
1

2

[
r + γmax

a′
Qφ(s

′, a′)−Qφ(s, a)
]]

Gradient descent on this loss yields:

φ← φ− α∇φL(φ,D)

The MSBE characterizes the accuracy of the current state of the Q-value network, by eval-
uating the match to the optimal Bellman equation. Performing gradient descent directly on
the loss above would be unstable. The part y(r, s′) = r + γmax

a′
Qφ(s

′, a′) is called the tar-
get, and arises from the temporal difference backup. The problem is that, during learning,
the target for Q(s, a) also depends on the current parametrization of the Q-value regressor.
Performing gradient descent as such would lead to divergence. It is thus common practice
to perform strategies that stabilize the learning by making a copy of the regressor, which
would then be called the target regressor, and updating it at a lower pace to prevent those
instabilities.

2.7 Q-learning and Policy Optimization
In Chapter 2.2, for the model-free case, the policy was said to be derived from the Q-values
by taking:

a∗(s) = argmax
a

Q∗(s, a)

These types of algorithms form the Q-learning family. Algorithms like DQN build Q-value
regressors using DNNs, that map a continuous (and/or very large and/or discrete) state
space to the Q-values of a discrete action space. The output of the DNN is thus multidi-
mensional and contains the Q-values of all the action space. The policy is then derived from
such a network by acting greedily using the max operator. For continuous action spaces,
DQN could be used by discretizing the action space.

In practice however, DQN becomes intractable if the discretized action space is very large.
Policy optimization methods offer thus an alternative by directly learning a policy π. To do
so, the policy is parametrized by a set of parameters θ using a function approximator πθ.
The parameters are then tuned by maximizing the expected return objective function:

J(πθ) = E
τ∼πθ

[R0|πθ] = E
τ∼πθ

[ ∞∑
t=0

γtrt|πθ

]
Gradient ascent on this objective function yields:

θ ← θ + α∇θJ(πθ)

For a stochastic policy π(a|s), the gradient can be shown by the stochastic policy gradient
theorem [12] to be equal to:

∇θJ(πθ) = E
a′∼π

[∇θ log πθ(a|s)Qπ(s, a)]
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For a deterministic policy µ(s), the gradient can be shown by the deterministic policy
gradient theorem [13] to be equal to:

∇θJ(µθ) = E
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
2.8 Actor-Critic Architecture
The policy gradient theorems can be used in the tuning process of the regressor used,
such as backpropagation for DNNs, to perform gradient ascent in order to maximize the
objective function. Policy optimization allows to directly tune the policy, instead of deriving
it by acting greedily on the Q-values. However, we see that in both policy gradients, the
Q-function is needed. In simpler algorithms, like Reinforce, the returns Rt can be used
as an unbiased sample of the Q-values. It can be shown that subtracting a baseline to
the returns, such as a running average, can reduce the variance and thus stabilize the
learning, without changing the gradient in expectation. This approach is however still
noisy. An alternative would be to estimate the Q-value using a regressor and a loss as well.
Such a regressor is called a critic. Policy optimization methods using a critic are called
actor-critic methods. Other value functions can be used, such as the advantage function:
Aπ(s, a) = Qπ(s, a)− V π(s).
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3 Algorithms

Of the various types of model-free RL architectures presented in Chapter 2, namely Q-
learning, policy optimization and actor-critic, many different algorithms exist. In this
project, we focus on three SOTA actor-critic algorithms leveraging DNNs as function approx-
imators: the Deep Deterministic Policy Gradient (DDPG) [14], the Twin Delayed DDPG
(TD3) [15] and the Soft Actor Critic (SAC) [16] algorithms. In this case study, we decide
to focus on deterministic algorithms (DDPG and TD3), yet we also take a look at SAC.

3.1 DDPG
DDPG is an actor-critic algorithm using DNNs as function approximations and thus learns:
a policy network paramterized by θ for the actor and a Q-value network parametrized by φ
for the critic. It concurrently learns a deterministic policy µθ(s) and Qφ(s, a). As the agent
interacts with the environment, it collects a set D of transitions (s, a, r, s′).

On the policy optimization side of DDPG, the goal is to perform backpropagation on the
actor network using the deterministic policy gradient. The expectation in the deterministic
policy gradient can be approximated by a sample mean on a minibatch B of transitions
sampled from D. The deterministic policy gradient then performs a stochastic gradient
ascent on the objective function using the following estimate of the gradient:

∇θJ(πθ) ≈
1

|B|
∑
s∈B
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

On the Q-learning side of DDPG, the goal is to perform backpropagation on the MSBE
loss, characterizing the accuracy of the current state of the Q-function regressor by boot-
strapping. On the minibatch B, this gives:

∇φL(φ,B) =
1

|B|
∑

(s,a,r,s′)∈B

(Qφ(s, a)− y(r, s′))2

As discussed in Chapter 2.6, computing the targets y(r, s′) with the parametrization Qφ(s, a)
of the Q-function would be unstable. Thus a separate critic network is used, the target critic
network, and parametrized separately by φtarg. Furthermore, in order to act greedily on the
target critic network, the following approximation is made:

max
a′

Qφtarg(s
′, a′) ≈ Qφtarg(s

′, µθtarg(s
′))

This approximation, which is valid in the limit case where the derived policy is the optimal
policy, works if a target policy network µθtarg(s

′) is used. In order to let the two target
networks evolve at a lower pace compared to the other networks, polyak averaging is used:

φtarg ← ρφtarg + (1− ρ)φ

θtarg ← ρθtarg + (1− ρ)θ

In the update rules above, ρ is the polyak interpolation factor. The set D from which
we sample the minibatch B for the stochastic gradient descent is called the replay buffer.
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It stores all the transition (s, a, r, s′) encountered when interacting with the environment.
Since all transitions are stored (even those acquired using an old state of the actor network),
DDPG is an off-policy algorithm. The reason that it is possible to do so, is that the optimal
Bellman equation used in the MSBE should be satisfied for all state transitions. Since
DDPG uses a deterministic policy, exploration is not built-in explicitly. Thus, noise is
added artificially during training: a = clip(µθ(s),+ε, aLow, aHigh) where ε ∼ N (Gaussian
noise has been found to work well). The variance of the Gaussian can be decayed throughout
the training to help convergence and to get higher quality samples, but this is not the case
in the Spinning Up library. The hyperparameters are:

• Epochs: the number of epochs to train the agent.

• Episode length: the length of a simulation episode, which is fixed during training in this
work. Longer episodes will make training slower, but will represent more accurately
the infinite-horizon returns.

• Steps per epoch: the number of interactions between the environment and the agent
per epoch, equal to the product of an episode length and the number of episodes per
epoch.

• γ: the discount factor, in the range [0, 1]. A discount factor close to 1 will give more
importance to future rewards.

• π learning rate: the learning rate of the actor network. With a small learning rate, the
DNN will converge slower and might get stuck in local optimas. With a large learning
rate, the DNN may be more robust to local optimas but may not converge.

• Q learning rate: the learning rate of the critic network. With a small learning rate,
the DNN will converge slower and might get stuck in local optimas. With a large
learning rate, the DNN may be more robust to local optimas but may not converge.

• ρ: the polyak interpolation factor, in the range [0, 1]. Controls the speed of the update
of the target networks.

• Batch size: the minibatch size for the stochastic gradient descent. Large batch sizes
may be more stable, but harder to compute.

• Start steps: number of initial steps performed with a random policy, before switching
to the real policy. Trick used to help exploration at the beginning.

• Hidden sizes: The number and size of the hidden layers of the DNN. Deep networks
may be able to capture more complex features but will be harder to tune.

• Actor noise: the standard deviation of the Gaussian noise added to the actor during
training. Noisier policies will explore more, but at the cost of possibly not converging.

• Replay size: size of the replay buffer.

3.2 TD3
TD3 has been developed in order to alleviate some of the issues of DDPG. Most notably,
the policy has been found to exploit over-estimations of the Q-value regressor, leading to a
failure. To solve this, TD3 adds three features to DDPG:
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1. Clipped double-Q learning: two different DNNs are used, to learn concurrently two dif-
ferent Q-value function approximation Qφ,1(s, a) and Qφ,2(s, a), each having their own
separate target critic network Qφtarg,1(s

′, µθtarg(s
′)) and Qφtarg,2(s

′, µθtarg(s
′)). During

their training, a single target y(r, s′) is used, which is computed using the minimum
value computed by the two target critic networks. This way, punctual over-estimations
cannot be exploited as the minimum value of the two will be used.

2. Delayed policy updates: the policy and target policy networks are updated at a smaller
frequency than the Q-value regressors, to cutoff the use of Q-value over-estimations.

3. Target policy smoothing: clipped noise is added to the output of the target policy
µθtarg(s

′) in order to smooth out abrupt changes in policy. The policy tends to exploit
over-estimations in the Q-function, and can thus result in abrupt changes in policy
at some actions. By adding noise on the target action, sharp peaks will tend to be
avoided by picking actions in the neighborhood.

The added hyperparameters are:

• Policy delay: the number of critic update between each policy update.

• Target noise: the standard deviation of the noise added to the target policy to smooth
out sharp policy changes.

• Noise clip: limit bounds for the target policy smoothening noise.

Thus, TD3 offers a promising alternative as it is less optimistic with regards to the Q-values
and more prudent, without diverging significantly from DDPG in terms of structure and
added hyperparameters.

3.3 SAC
Compared to TD3, SAC diverges more from DDPG, and so it was not studied in as much
details. Still, it was experimented with in order to showcase some of it’s strength and at-
tributes. SAC learns a stochastic policy, thus explicitly incorporating exploration as opposed
to DDPG and TD3. Exploration is controlled in SAC through entropy regularization, which
adds an entropy term to the returns, changing the objective function of the policy gradient
to feature this trade-off between maximizing the returns and the entropy which reflects the
randomness of the policy. Exploration is thus embedded in the objective function, which
can help the agent avoid local optimas. The hyperparameters are not described here.

3.4 Implementation
To train an agent on the gyroscope Gym environment using these algorithms, many differ-
ent Python frameworks are available, namely Open AI’s Spinning Up, Berkeley’s RLlib and
Stable Baselines. Spinning Up was chosen early on for it’s ease of use, thorough documen-
tation and convenient plotting functions. However it was found that the simplicity of the
framework, while convenient in order to get started fast, was ultimately detrimental. Most
notably, Spinning Up’s implementations of DDPG, TD3 and SAC do not support paral-
lelization yet. Also, scheduled noise and learning rates cannot be implemented. For these
reasons, tackling RLlib’s steeper learning curve from the start would be rewarding for the
reader instead of going forward with Spinning Up.
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4 Environment

In order to train a RL agent to control the gyroscope, a naive approach would be to train it
on the actual setup, to obtain true physical samples. However such an approach would be
unpractical as training would be unrealistically long, and pose security issues since the agent
will explore in the early stages of training, resulting in dangerous behaviors. Therefore, as
in most RL works, a simulation of the physical system is leveraged in order to accelerate
training. This raises the question of the aptitude of the policy learned in simulation to
transfer to the physical system. Performing an extensive analysis on the accurate modeling
of the gyroscope to build a high-fidelity simulator would alleviate such an issue. However,
whether the policy will be able to perform well on the physical system is still not guaranteed.
In addition, such an approach would question the relevance of a RL approach to the control
problem, as an accurate model of the system could directly be used with classical control
methods that have already proven to be effective. Thus, the model used in the simulation
will be an approximate representation of the dynamics of the system, and further work will
be done in Chapter 7 to tackle the problem of the simulation to reality transfer.

4.1 Modeling
The environment that the RL agent will interact in will therefore be a numerical simulation
of the Quanser 3 DOF gyroscope. This 3 DOF system has two gimbals, an outer red one
and an inner blue one, described by the angular positions θ and φ, as well as a rotating gold
disk of angular position ψ̇. In order to have reasonable training times and to avoid making
the simulation a speed bottleneck, the disk angular velocity ψ̇ is assumed to be constant
and will be set to ψ̇ = ω. This is a reasonable approximation since the disk angular velocity
is usually controlled separately using standard PID controllers.

Figure 2: Quanser’s 3 DOF Gyroscope
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The equations of motion of the gyroscope can be derived by using Lagrangian mechanics.
The 2 generalized coordinates of the gyroscope are qi = {θ, φ} and thus 2 dynamical equa-
tions will be derived. Throughout the derivations, the subscripts r and b will be used to
characterize a physical quantity of the red or the blue gimbal respectively. The subscripts θ
and φ will be preferred when expressing the control torques T and input voltages u of the
gimbals. The Euler-Lagrange equations give:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Qi

The rotational energy is the only component of the Lagrangian:

L =
1

2
(ωTr Jrωr + ω

T
b Jbωb + ω

T
d Jdωd)

Where:

• Ji: the inertia tensor of the ith body expressed in its inertial frame

• ωi: the rotational vector of the ith body expressed in its inertial frame

In particular, the inertia tensors are:

Jr =

Jrx1 0 0
0 Jrx2 0
0 0 Jrx3

 Jb =

Jbx1 0 0
0 Jbx2 0
0 0 Jbx3

 Jr =

Jdx1 0 0
0 Jdx2 0
0 0 Jdx3


For the rotational vectors, we follow the geometrical derivations found in [5], and obtain:

ωr =

θ̇0
0

 ωb =

cos(φ)θ̇φ̇

sin(φ)θ̇

 ωr =

 cos(ψ) sin(φ)θ̇ + sin(ωt)φ̇

− cos(φ) sin(ψ)θ̇ + cos(ωt)φ̇

ω + sin(φ)θ̇


The Lagrangian is then equal to:

L(θ̇, φ, φ̇) = 1

4

{
2(Jbx1 + Jdx1)φ̇

2 + 2Jdx3ω
2 + 4Jdx3 sin(φ)θ̇ω

+(Jbx1 + Jbx3 + Jdx1 + Jdx3 + 2Jrx1 + (Jbx1 − Jbx3 + Jdx1 − Jdx3) cos(2φ))θ̇
2
}

For the friction-less gyroscope and by introducing the generalized forces corresponding to
the torques Tθ and Tφ applied to the gimbals, the equations of motion are then derived from
the following system: 

d

dt

∂L
∂θ̇
− ∂L
∂θ

= Tθ

d

dt

∂L
∂φ̇
− ∂L
∂φ

= Tφ

Using Mathematica, the equations lead to 2 non-linear coupled differential equations:

1

2
(Jbx1 + Jbx3 + Jdx1 + Jdx3 + 2Jrx1 + (Jbx1 − Jbx3 + Jdx1 − Jdx3) cos(2φ))θ̈

+Jdx3
ω(φ)φ̇− (Jbx1

− Jbx3
+ Jdx1

− Jdx3
) sin(2φ)φ̇θ̇ = Tθ
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(Jbx2
+ Jdx1

)φ̈+ (Jbx1
− Jbx3

+ Jdx1
− Jdx3

) cos(φ) sin(φ)θ̇2 − Jdx3
ω cos(φ)θ̇ = Tφ

Before solving the equations for θ̈ and φ̈, the following change of variable will be made,
which is more familiar in a state-space representation context:

x =


x1
x2
x3
x4

 =


θ

θ̇
φ

φ̇


where x is the standard state vector of the state-space representation, not to be confused
with the observation ot and the state st of RL. Finally, solving for ẋ1, ẋ2, ẋ3 and ẋ4, the
state-space system of equations is:

ẋ1 = x2

ẋ2 =
Tθ + (Jbx1

− Jbx3
+ Jdx1

− Jdx3
) sin(2x3)x2x4 − Jdx3

cos(x3)x4ω

Jbx1
+ Jdx1

+ Jrx1
+ (Jbx1

− Jbx3
+ Jdx1

− Jdx3
) sin2(x3)

ẋ3 = x4

ẋ4 =
Tφ − (Jbx1 − Jbx3 + Jdx1 − Jdx3) cos(x3) sin(x3)x

2
2 + Jdx3 cos(x3)x2ω

Jbx2
+ Jdx1

For the gyroscope with friction, the generalized forces in the Euler-Lagrange system of
equations are changed to incorporate static and dynamic friction:

d

dt

∂L
∂θ̇
− ∂L
∂θ

= Tθ − fvr θ̇ − fcr sign(θ̇)

d

dt

∂L
∂φ̇
− ∂L
∂φ

= Tφ − fvbφ̇− fcb sign(φ̇)

Following the same procedure as for the friction-less case, the state-space system of equations
for the gyroscope with friction is:

ẋ1 = x2

ẋ2 =
Tθ − fvr θ̇ − fcr sign(θ̇) + (Jbx1

− Jbx3
+ Jdx1

− Jdx3
) sin(2x3)x2x4 − Jdx3

cos(x3)x4ω

Jbx1
+ Jdx1

+ Jrx1
+ (Jbx1

− Jbx3
+ Jdx1

− Jdx3
) sin2(x3)

ẋ3 = x4

ẋ4 =
Tφ − fvbφ̇− fcb sign(φ̇)− (Jbx1 − Jbx3 + Jdx1 − Jdx3) cos(x3) sin(x3)x

2
2

Jbx2
+ Jdx1

+
Jdx3

cos(x3)x2ω

Jbx2 + Jdx1

The control inputs to the gyroscope are the input voltages to the DC motors generating
the torques Tθ and Tφ. We thus need to express the torques Tθ and Tφ as a function of the
input voltages uθ and uφ to the DC motors controlling the two gimbals. The dynamics of
the motors are faster than the mechanical dynamics of the gyroscope. Therefore, the circuit
model of the DC motors can be simplified to a simple DC motor steady-state gain KT .
The torques can thus be expressed as the product of the current gain KAmp, the DC motor
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steady-state gain KT , the motor efficiency η, the gearbox ratio ni and the input voltage ui:{
Tθ = (KAmpKT ηnr)uθ

Tφ = (KAmpKT ηnb)uφ

The numerical values used throughout the project for the motor and gyroscope constants
are resumed in Table 1 and Table 2 respectively (see [4] for datasheets).

Table 1: Motor constants

Quantity Value Symbol Dimension

Current Gain 0.5 KAmp AV−1

Motor Gain 0.0704 KT NmA−1

Motor Efficiency 0.86 η 1
Red Gearbox Ratio 1.5 nr 1
Blue Gearbox Ratio 1 nb 1

Table 2: Gyroscope constants

Quantity Value Symbol Dimension

Red Inertia e1 0.0179 Jrx1
kgm2

Blue Inertia e1 0.0019 Jbx1
kgm2

Blue Inertia e2 0.0008 Jbx2 kgm2

Blue Inertia e3 0.0012 Jbx3 kgm2

Disk Inertia e1 0.0028 Jdx1
kgm2

Disk Inertia e2 0.0056 Jdx2
kgm2

Disk Inertia e3 0.0056 Jdx3
kgm2

4.2 Feedback Linearization
In order to compare the agent that we will derive throughout this project to a baseline,
the controller derived in [5] through FL will be implemented. The purpose of implementing
such a controller is also to evaluate the accuracy of the simulation created in this project,
as it will be shown in the Chapter 4.3.

FL is a technique in which a feedback law and a transformation are computed in order
to convert a non-linear system into a linear and controllable one. The details can be found
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in [5], and yield the following control law:

uθ =
1

2

{
(Jbx1

+ Jbx3
+ Jdx1

+ Jdx3
+ 2Jrx1

+ Jbx1
cos(2x3)− Jbx3

cos(2x3) + Jdx1
cos(2x3)

− Jdx3
cos(2x3))σθ2x1,ref + 2ωJdx3

σω sin(x3)− σθ2(Jbx1
+ Jbx3

+ Jdx1
+ Jdx3

+ 2Jrx1

+ (Jbx1
− Jbx3

+ Jdx1
− Jdx3

) cos(2x3))x1 + 2x2(fvr − Jbx1
σθ − Jbx3

σθ − Jdx1
σθ

− Jdx3
σθ − 2Jrx1

σθ − (Jbx1
− Jbx3

+ Jdx1
− Jdx3

)σθ cos(2x3)

− (Jbx1 − Jbx3 + Jdx1 − Jdx3) sin(2x3)x4)− 2Jdx3σω sin(x3)ω + 2Jdx3 cos(x3)x4ω
}

uφ =− (Jbx2
+ Jdx1

)(−σφ(x3,refσφ − σφx3 − 2x4)

+
(−Jbx1

+ Jbx3
− Jdx1

+ Jdx3
) cos(x3) sin(x3)x2x2 − fvbx4 + Jdx3

cos(x3)x2ω

Jbx2
+ Jdx1

(1)

Here: −σθ,−σφ and −σω are the poles chosen by the user.

4.3 Simulation
Having derived the simplified equations of motion of the gyroscope as well as the FL control
law, the mechanical system can then be simulated in Python using the integrate.solve_ivp
command from the SciPy library, which solves an initial value problem for a system of ODEs.
The solver is chosen to be the explicit Runge-Kutta method of order 5 in this project.

Due to the COVID-19 outbreak, a proper simulation verification process to compare this
method with actual experimental data from the gyroscope was not possible. Instead, in
addition to the control of the general coherence of the simulation results, a simple verifica-
tion was made by reproducing one experiment conducted in [5], where Y. Agram has done
a proper simulation verification process during his project. Roughly, if the results of the
experiment on the two different simulations are coherent, the simulation created here should
carry the same attributes as in [5], and thus reflect the same similarities and differences with
the experimental data. Since the simulation in this project is a simplification of the 3 DOF
gyroscope to only 2 DOF, the results should also reveal the accuracy of such an assumption.

The same step tracking experiment as in [5] is thus conducted, for θref = 45◦, φref = −60◦
and [θ0, φ0] = [0◦, 0◦] and at a disk angular velocity of ω = 300 RPM. The same friction
constants as in [5] are used. They are shown in Table 3.

Table 3: Friction constants

fcr fvr fcb fvb

0 0.002679 0 0.005308

The plots for the angular positions and velocities in Figure 3 and 4 show very comparable
results with the Figure 33 of [5], and thus conclude the simulation verification. For com-
pleteness, data of the gyroscope’s angular position and velocities as well as control inputs
should be acquired on the physical system for a variety of regimes and compared with the
simulation that is fed with the same control inputs.
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Figure 3: Step tracking angular positions on simulated gyroscope for θref = 45◦ and φref =
−60◦ and [θ0, φ0] = [0◦, 0◦] at 300 RPM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

−15

−10

−5

0

5

10

15

Ve
lo

ci
ty

[R
P

M
]

θ̇

φ̇

Figure 4: Step tracking velocities on simulated gyroscope for θref = 45◦ and φref = −60◦
and [θ0, φ0] = [0◦, 0◦] at 300 RPM
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4.4 Gym
Following previous projects, it was chosen early on to follow Open AI’s Gym reinforcement
learning framework for the gyroscope environment, which allows easy integration with many
implementations of RL algorithms. Before doing so, the simulation must be adapted to the
RL framework. The essential variables of the MDP are:

• The state st = (θ, θ̇, φ, φ̇, θref , φref , ω), a 7D continuous space.

• The observation ot = (cos θ, sin θ, θ̇, cosφ, sinφ, φ̇, θref , φref , ω), a 9D continuous
space normalized to [−1, 1].

• The action at = (uθ, uφ), a 2D continuous space normalized to [−1, 1].

• The reward rt+1 = ρ(st+1, at), where ρ is a function defined at training time.

The observation ot, the action at and the reward rt+1 are fed to the DNN regressor during
training. Empirical evidence shows that DNNs learn better when the data is normalized
before using it as training samples. The observation ot and the action at are thus normalized
beforehand to boost the learning process. Special attention will be given to the scaling of
the reward reward rt+1 in Chapter 5.2.

A Gym environment is a Python class with a set of methods that will be called by the
RL algorithms during training to perform interactions. The essential methods for a Gym
class to work are:

• __init__: to initialize the simulation parameters (inertias, motor constants, friction
coefficients) as well as to define the observation space and the action space.

• reset: to reset the gyroscope to a random initial state, and returns an observation of
that state.

• step: to perform a step in the simulation using the action taken by the agent. Runs
the simulation for Ts and returns an observation of the new state of the system, the
reward obtained and some optional information. Ts is the controller time-step, in this
project we chose Ts = 0.05s to obtain reasonable training times. During training, a
complete simulation episode consists of 110 steps of length Ts = 0.05s.

• render: to plot or render the environment. Not used in this project.

• close: to close the existing environment.

Apart from these essential Gym methods, other methods were added to the environments
created in this project, the most important of which are:

• args_init: to initialize the reward function chosen by the user at training time, as
well as any other argument that cannot be passed through the standard __init__
method.

• _get_obs: to transform the state of the environment into an observation vector.

• reset2state: to reset the environment to a desired initial position.

• init_param: to initialize the friction and noisy inertia parameters.
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• randomize_param: to randomize the friction and noisy inertia parameters.

Apart from these methods, accessing methods as well as non-member methods were imple-
mented to implement various tasks such as the reward functions to be called by step, the
state-space model and normalizing functions.

4.5 Discontinuity
In a first iteration of this work, the observation returned by the Gym environment was
defined to be the same as the state stored in the environment class:

ot = st = (θ, θ̇, φ, φ̇, θref , φref , ω)

This definition of the observation was chosen as it is often used in RL control problems
involving angular positions [17]. However it was found that this definition is not prudent. To
show why, we introduce a step tracking experiment for θref = ±180◦ and [θ0, φ0] = [0◦, 0◦]
at a disk angular velocity of 200 RPM shown in Figure 5. This experiment was done using a
DDPG agent trained on the environment with this wrong choice of the returned observation
ot.
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Figure 5: Step tracking on discontinuous environment for θref = ±180◦ and [θ0, φ0] = [0◦, 0◦]
at 200 RPM

The resulting oscillating behavior is due to the angular positions being normalized to the
interval [−180◦, 180◦] (then normalized further to [−1, 1] right before feeding it to the DNN
to help the learning process as explained in Chapter 4.4) and to the definition of ot. The
normalization is necessary in order to keep the range of the observation space finite in the
Gym environment. This however causes a discontinuity at the −180◦/180◦ boundary, which
should actually be circular. Since the angular positions are used as such in the definition
of the observation ot, the DNN regressor learns function approximations with this disconti-
nuity. The −180◦ and 180◦ angular positions are thus "far" in terms of the DNN regressor
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domain of definition. Throughout the learning process, the regression in the −180◦ neigh-
borhood will be more influenced by the [−180◦, 0◦] range of the domain, while the 180◦

neighborhood will be more influenced by the [0◦, 180◦] range of the domain. Since the be-
havior of the system will be similar in these two neighborhoods, the learned regressors will
behave similarly, but with a significant discontinuity since to the two halves of the domain
have different properties in terms of control approach.

With the reference at θref = ±180◦, a trained agent starting at θ0 = 0◦ and at rest
will have a policy guiding it to build up negative angular velocities in order to rotate in
the right direction. Arriving at the reference, it can overshoot slightly, making the obser-
vation switch to 180◦ due to the normalization. After switching to the second half of the
domain with a negative angular velocity, the policy will guide the agent to build positive
angular velocities, overshooting again at the reference and looping back in a non-stationary
fashion. In a setting with a circular boundary, a trained policy would be smooth at that
boundary and make the agent progressively slow down, possibly at the cost of a steady-state
error. However here, since the boundary is a discontinuity, the policy acts differently on
either sides, influenced by the states visited during training on either halves of the domain.
This idea can be verified by looking at the output of the critic network at o−πt and oπt , the
observations corresponding to the cases θt = −180◦ and θt = 180◦:

Q(o−πt , [uθ = 0, uφ]) > Q(o−πt , [uθ 6= 0, uφ]) (2)

Q(oπt , [uθ = 0, uφ]) < Q(oπt , [uθ 6= 0, uφ]) (3)

In a setting where the boundary was circular, the Q-value of slowing down (uθ = 0) would
have been greater than the Q-value to act (uθ 6= 0) for oπt . We see that this is not the case,
leading to a non-stationary behavior.

In most of the examples encountered in the literature, the goal is to stabilize a system
around a certain fixed point. If proper work is done to recenter the coordinates, the discon-
tinuity would not be a problem since the agent will learn to stay away from the discontinuity
and can thus be left that way. In this work however, the goal is to be able to achieve refer-
ence tracking at any point. To get rid of the discontinuity, the observation has been defined
to:

ot = (cos θ, sin θ, θ̇, cosφ, sinφ, φ̇, θref , φref , ω) (4)

This definition comes at the cost of a larger observation space (9D instead of 7D), and thus
harder convergence.
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5 Reward Functions

The reward function is a key element of the RL problem formulation, as it embeds the agent’s
preferences and goals, which are necessary in order to guide the agent towards achieving
a certain task. However, engineering a reward function is not a trivial task. For a certain
class of problems, the reward function can be extracted easily from the context, such as
the game score in some Atari games. In other problems, a careful balance between multiple
conflicting attributes must be done in order to encapsulate all the challenges embedded in a
given task. In the continuous control problem, this is particularly relevant and draws some
of the same challenges as in designing the weighting matrices in the LQR objective function
so as to balance a fast response with a realistic control law.

5.1 Quadratic Reward Function
Since the reward function indeed draws some of the same motivations as the LQR objective
function, a logical first choice would be to specify a weighted squared error as reward func-
tion. We thus define the quadratic reward function (Q) rt+1 = ρ(st+1, at) = ρ(xt+1,ut) as
a weighted quadratic function of the state vector x (see Chapter 4.1) and the control input
u:

ρ(xt+1,ut) = −(xref − xt+1)
TQ(xref − xt+1)− uTt Put

As a warm-up for this work, and to test the quadratic reward function, three configurations
of the hyperparameters extracted from the baseline iterations found in [11] for DDPG, TD3
and SAC are evaluated using the quadratic reward function. These configurations feature
different hidden sizes for more complex representations, different action noise standard de-
viations for exploration, different discount factors and learning rates. The hyperparameters
can be found in the code and in [11]. The weighting matrices are tuned empirically. Plot-
ting the multi-step return R0 (called Performance here) against the number of epochs for
all configurations yields the learning curves in Figure 6, and the statistics in Table 4.
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Figure 6: Learning curves for various configurations under the quadratic reward function
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Table 4: Average reward for various configurations under the quadratic reward function

Mean Reward Standard Deviation

-900 159

We see that all configurations, no matter the algorithm, converge after at most 1e5 environ-
ment interactions to an average performance of about -900 with a fairly narrow standard
deviation, where an environment interaction is a single call to the step method. Such a
performance is representative of a large steady-sate error. Since all configurations seem to
fall rather quickly and systematically in the same local optima, the steady-state error is
assumed to be caused by other factors than an algorithm’s hyperparameter configuration,
of which we will explore a few here.

Previous work, namely [18], has emphasized similar issues of the quadratic reward func-
tion. Those issues can be understood by comparing the RL and LQR objective functions:

• RL objective function (dropping the expectancy):

JRL =

∞∑
t=0

γtρ(xt+1,ut)

• LQR objective function:

JLQR =

∞∑
t=0

ρ(xt+1,ut)

In a realistic setting, the infinite horizon discounted cumulative returns in RL are approxi-
mated by finite length trials:

JRL ≈
N∑
t=0

γtρ(xt+1,ut)

Two main differences can be extracted from these approaches: the exponential discounting
γt and the finite episode length in RL. Recall that the discount factor in RL is used to
discount future rewards and to prove convergence of the algorithms.

A first approach would be to treat the finite length approximation, by increasing the episode
length during training. We thus double the episode length and study the impact on per-
formance. We will use a configuration of DDPG, picked from the different ones shown
previously as a baseline, and test the doubled episode length using the same configuration
with two different seeds, denoted with the superscript ∗seed. The baseline configuration is
shown in Table 5.
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Table 5: Configuration for quadratic reward environment tests

Parameter Baseline

Epochs 100
Episode Length 110
Steps per Epoch 110 · 15
Gamma 0.995
π Learning Rate 0.0025
Q Learning Rate 0.0025
Polyak 0.995
Batch Size 100
Start Steps 10000
Hidden Sizes (400)
Actor Noise 0.1

The episodes will last longer, thus the total cumulative returns will be larger. Since we can-
not use the cumulative returns as a performance score to compare both cases, we implement
different metrics that are applied on 200 randomly generated initial conditions using the
reset method, within the bounds defined. These metrics are:

• The Mean Absolute Error (MAE).

• The Mean Steady-State Error (MSSE).

• The percentage of trials ending in defined error margins.

• The percentage of trials that lead to unsteady behavior.

• The training time.

• The rise time.

• The settling time.

• The control input magnitude.

• The control input variation.

These metrics will be used throughout the rest of this work. However, all of the metrics
will not be shown for each experiment, only the ones relevant to the experiment. For the
metrics in Table 6, the error margin for qualifying for in bounds is set to ±0.3 [rad] until
further notice.
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Table 6: Metrics for longer episode length under the quadratic reward function

Config. Baseline 220 Ep. Length∗0 220 Ep. Length∗10

θ MAE [rad] 0.59 0.39 0.46
φ MAE [rad] 0.46 0.53 0.39
θ MSSE [rad] 0.55 0.34 0.37
φ MSSE [rad] 0.37 0.44 0.28
θ in bounds [%] 32.00 53.50 42.00
φ in bounds [%] 44.50 28.00 50.50
θ unsteady [%] 0.00 0.00 11.50
φ unsteady [%] 7.00 25.00 11.50
Convergence time (min) 14.70 30.84 31.47

From the lines highlighted in the table, we can see that the MSSE is reduced, in particular
for the red gimbal. In general, the MAE is also reduced, indicating both a faster response
and a smaller steady-state error. Yet, the improvement is not dramatic and the steady-
state error is still very large with respect to control standards. A reason for this comes
from the second difference that was mentioned earlier: the discount factor. In fact, the
exponential discount will eventually cancel-off the cost of the steady-state-error in the limit
t→∞, and thus render useless the efforts to increase the episode length, as also seen in [18].

In general, those issues emerge from the relative importance of the rewards at each time-step
to the total cost for the quadratic reward function. Those issues will be further detailed and
compared in Chapter 5.3. One way to deal with the cancelling of the steady-state error cost
would be to increase the weights assigned in the weighting matrices. However even if the
weights were tuned further, such an approach would not lead to generalizable results. Also,
the slight improvement in performance also comes at the cost of a convergence time that is
twice as long. In summary, such an approach is not encouraging and will not be pursued
further.

By continuing to draw links with control theory, one can choose to augment the obser-
vation from the environment to the agent with integral terms iθ and iφ of the angular
positions. In a control theory context, this approach stems from drawing links with integral
terms added to correct static offsets. In a RL context, this approach stems from the fact
that the Markov property may be difficult to satisfy without adding an extra memory term,
which iθ and iφ emulate. The observation can thus be augmented:

ot = (cos θ, sin θ, θ̇, cosφ, sinφ, φ̇, θref , φref , ω, iθ, iφ)

Different forms of the integral term are experimented with:

• Integral:

iθ =

∫
(θref − θ)

iφ =

∫
(φref − φ)
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• Scaled:

iθ =

∫
(θref − θ)

max (θref − θ) ·T

iφ =

∫
(φref − φ)

max (φref − φ) ·T

• Normalized:

iθ =
sign

∫
(θref − θ)

1 + |
∫
(θref − θ)|

iφ =
sign

∫
(φref − φ)

1 + |
∫
(φref − φ)|
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Figure 7: Learning curves for environments under the integral-augmented and quadratic
reward functions

In figure 7, we can see a comparison of the learning curves with the baseline, from which
we can directly compare the performance scores. The normalized variant of the integral
follows a learning curve close to the baseline’s, a hint that the agent does not exploit the
additional observation, while the other two variants seem to showcase an unlearning phe-
nomenon. An attempt at understanding the results for the normalized integral through a
state representation learning analysis is presented in Section 8.

5.2 Variations of the Quadratic Reward Function
Since the different attempts at improving the performance using a quadratic reward function
have not been successful, it is safe to assume that the issue comes from the reward function.
Thus, we consider modifying the quadratic reward function in different ways in order to
guide the agent towards the task that we wish to accomplish: zero steady-sate error. The
different variations are:
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• Quadratic with Ending Penalty (QEP):

ρ(xt+1,ut) = −(xref − xt+1)
TQ(xref − xt+1)− uTt Put − p

where:

p =

{
p, if ending error is out of bounds
0, otherwise

• Quadratic with Penalty (QP):

ρ(xt+1,ut) = −(xref − xt+1)
TQ(xref − xt+1)− uTt Put − p

where:

p =

{
p, if current error is out of bounds
0, otherwise

• Quadratic with Exponential (QE):

ρ(xt+1,ut) =− (xref − xt+1)
TQ(xref − xt+1)− uTt Put

− αθ(1− exp
{
−βθ(θref − θt+1)

2
}
)

− αφ(1− exp
{
−βφ(φref − φt+1)

2
}
)

• Quadratic with Bonus (QB):

ρ(xt+1,ut) = −(xref − xt+1)
TQ(xref − xt+1)− uTt Put + b

where:

b =

{
b, if current error is within bounds
0, otherwise

The idea behind the QEP and QB reward functions is to inform the agent of the performance
it achieved at the end of the episode. The difference between the two is that a weak agent
will be penalized systematically at the end of an episode by using QEP, while QB is a form
of sparse reward. QP acts as a form of an integral term, by penalizing the agent throughout
the episode for unsatisfactory behavior. QE, on the other hand, introduces a finer gradient
near the goal in order to guide the agent towards the desired behavior. It is also a form of
sparse reward as the active zone of the exponential is small, with a gentle gradient far from
the goal inherited from the quadratic function. The different metrics are shown in Table 7.

Table 7: Metrics for variations of the quadratic reward function

Metric Q QEP QP QE QB

θ MAE [rad] 0.59 0.77 0.52 0.40 0.63
φ MAE [rad] 0.46 0.54 0.37 0.29 0.46
θ MSSE [rad] 0.55 0.60 0.42 0.29 0.54
φ MSSE [rad] 0.37 0.48 0.31 0.21 0.40
θ in bounds [%] 32.00 40.00 38.00 65.50 28.00
φ in bounds [%] 44.50 34.50 46.50 74.00 27.50
θ unsteady [%] 0.00 0.00 0.00 0.00 5.00
φ unsteady [%] 7.00 0.00 0.00 3.00 8.00
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We notice from the highlights that except from QE which improves on Q thanks to the
added gradient near the goal, all variants fail to improve on the quadratic function. The
reason stems from three factors: the same exponential discounting issue as seen in Chapter
5.1, the TD backup and the scale of the reward values.

The exponential discounting issue could be alleviated by tuning the penalty/bonus value,
however the two other issues hinder any effort to do so. We will first explain the issue
stemming from the TD backup operator, which concern mostly QB and QEP.

At the end of an episode, when receiving a reward with a penalty or a bonus, the TD
backup that is used to calculate the loss in the DRL algorithms affects only the state-action
pair (sN , aN ) leading up to the episode termination. Thus, the penalty/bonus received will
only affect this state-action pair, while the sequence of sub-optimal decisions that led up to
a final steady-state error that is out of bounds are not impacted. If a similar sequence was
to be repeated during training, the state-action pair (sN−1, aN−1) would now be impacted
by the penalty/bonus of the previous sequence, and so on. We thus see that punctual re-
wards like these would take a large amount of iterations before flowing back and affecting
the whole sequence of sub-optimal decisions taken.

Eligibility traces were introduced to alleviate such an issue. Roughly speaking, eligibility
traces are decaying traces e(s, a) of state-action pairs visited during an episode. A Q-value
update of any state-action pair (st, at) is then performed on all {(s0, a0), . . . , (st−1, at−1)}
that led up to (st, at), multiplied by the decaying factor e(si, ai) that weighs the relevance of
each (si, ai) with respect to (st, at). However, because of how DRL algorithms are designed,
namely the sampling in the replay buffer, eligibility traces are not trivial to implement and
where thus not explored further. Active work is however done on such improvements, such
as in [19].

Finally, scaling of the rewards might play an important role in the failure of these reward
functions, most notably QP. It has been shown that having inputs or outputs of a DNN
that lie at varying scales can hinder the learning process. The reason is that in this case,
the DNN has to learn unbalanced distributions of weights and biases. Thus, it is common
practice to scale the inputs, which we have done, and the outputs, which can lie at very
different scales for QP depending on the response.

5.3 Alternative Reward Functions
Despite the efforts made, the quadratic reward function failed as a comprehensive expression
of the control task. Thus, alternative reward functions were studied, with the hope that
those would favor zero steady-state error solutions explicitly in their structure. Following
the insights brought by [18], the absolute error reward function (A) was used. In fact,
the absolute value is supposed to reduce the contribution of the initial, transient error, in
favor of the steady-sate error. The squared-root error was evaluated in [18], but displayed
unstable learning behaviors. A normalized (N) error function was also evaluated:

• Absolute (A):
ρ(xt+1,ut) = −qT

∣∣xref − xt+1

∣∣− pT |ut|

35



• Normalized (N):

ρ(xt+1,ut) = −
|θd−θt+1|

k

1 + |θ
d−θt+1|
k

−
|φd−φt+1|

k

1 +
|φd−φt+1|

k

− qθ̇ θ̇
2 − qφ̇φ̇

2 − uTt Put

The normalized reward function features a parameter k that controls it’s slope. The response
of the function is rather uniform if the absolute error is larger than k, while the gradient is
steep if the error is smaller than k. Since the function is equal to − 1

2 if the error is equal to k,
this parameter represents, roughly speaking, the point at which we consider that the agent
is achieving 50% of the desired task. This function is expanded with quadratic penalties
on the velocities and control inputs. The structure of the function explicitly encourages
exploration thanks to the uniform response far from the goal. Yet, the steep gradient helps
convergence near the goal. It is therefore a form of sparse reward with a guiding gradient
near the goal. Furthermore, the normalization solves the scaling issues discussed above.
The performance of these two reward functions are presented in Table 8.

Table 8: Metrics for alternative reward functions

Metric Q A N

θ MAE [rad] 0.59 0.41 0.49
φ MAE [rad] 0.46 0.34 0.32
θ MSSE [rad] 0.55 0.33 0.17
φ MSSE [rad] 0.37 0.25 0.16
θ in bounds [%] 32.00 51.50 82.50
φ in bounds [%] 44.50 54.50 89.00
θ unsteady [%] 0.00 0.00 0.00
φ unsteady [%] 7.00 0.00 0.00

The absolute reward function offers improvement comparable to QE, which is consistent
with the results of [18]. The absolute value function reduces the importance of initial errors,
while QE has a steeper slope near the goal. Those two different approaches both yielding
improvements on Q, we can hypothesize that a function implementing both, such as N, may
result in significant improvement. Looking at the results of N, we see that it offers a dra-
matic improvement on all previous reward functions on both the MSSE and the percentage
of trials in bounds, as highlighted in Table 8.

As discussed previously, the normalized reward function explicitly encourages exploration.
As a result, the agent is able to avoid local optimas that are associated with a fast transient
response and large steady-state error. Consistent with the fact that N encourages explo-
ration, convergence occurs in around 1.5e5 interactions, which is larger than for Q. With the
other reward functions, such local optimas must be predominant in the reward landscape.
As discussed, a reason why comes from the fact that the steady-state error cancels off, in
favor of a large cost on the initial error. This can be studied by plotting the normalized
returns contribution R0:t

R0
for an entire episode, as shown in Figure 8.
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Figure 8: Comparison of the normalized discounted cumulative reward for three different
reward functions

The results for Q and A are very similar as those found in [18]: for Q, the value of the total
returns comes mostly from the contribution of the initial error, whereas A is able to reduce
that effect, putting more emphasis on the steady-state error. An improvement on [18] comes
from from the fact that the novel normalized reward function is able to decrease the effects
of the initial error even more. For these reasons, the normalized reward function is chosen
as basis for the rest of the work, while the others are not investigated further.
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6 Simplified Model Training

Using the normalized reward function, an agent can be trained to learn a policy that achieves
the control task on the gyroscope. In this section, friction is neglected in the model of the
environment. We thus train agents on a simplified model of the gyroscope. The policy
derived from such training may probably not be transferable to the control of a simulation
with friction, even less for the true physical system; it nonetheless provides a good starting
point. The sim-to-real issue, which is highly relevant when applying RL to robotics, will be
tackled in Chapter 7.

6.1 Algorithm Choice
A single DRL algorithm will be chosen from the three different state-of-the-art algorithms
discussed in Chapter 3 in order to focus the aim of the case study. Using the hyperparameter
selection from Spinning Up’s documentation and from [11], the configurations in Table 9
are used for comparison.

Table 9: Configurations of the 3 algorithms

Parameter DDPG TD3 SAC

Epochs 200 200 200
Episode Length 110 110 110
Steps per Epoch 110 · 15 110 · 15 110 · 15
Gamma 0.995 0.995 0.995
π Learning Rate 0.001 0.0025 0.0005
Q Learning Rate 0.001 0.0025 0.0005
Polyak 0.995 0.995 0.995
Batch Size 100 100 100
Start Steps 20000 20000 20000
Hidden Sizes (400) (400) (400)
Actor Noise 0.1 0.1 0.1
Policy Delay 2
Target Noise 0.2
Noise Clip 0.1
Alpha 0.2

The performance evaluation for all three algorithms are presented in Table 10. In this table,
the error margin for qualifying for in bounds is set to ±0.05 [rad].
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Table 10: Metrics for the 3 algorithms

Metric DDPG TD3 SAC

θ MAE [rad] 0.54 0.41 0.40
φ MAE [rad] 0.30 0.28 0.31
θ MSSE [rad] 0.36 0.22 0.15
φ MSSE [rad] 0.19 0.13 0.11
θ in bounds [%] 83.00 75.50 76.50
φ in bounds [%] 73.50 87.50 49.00
θ unsteady [%] 0.00 0.00 0.00
φ unsteady [%] 0.00 0.00 47.00
uθ [V] 0.67 0.83 3.94
uφ [V] 0.40 0.51 3.28
uθ variation [V] 0.06 0.11 1.49
uφ variation [V] 0.04 0.04 1.34

From the results highlighted in Table 10, it is clear that both TD3 and SAC offer better
performances in terms of MSSE, that being especially true for SAC. It is important to note
that these results come from a light search on the hyperparameters, and that a more exten-
sive hyperparameter search may reveal different tendencies. Still, those results are coherent
with the initial TD3 and SAC papers, in which those algorithms are shown to outperform
DDPG on most tasks with less sensitivity to the chosen hyperparameters. However as it is
highlighted at the end of Table 10, SAC showcases mean control voltages up to eight times
as high as the ones from DDPG and TD3. The mean variation between subsequent control
voltages, which is a measure of the speed of variation of the control law, can reach more
than thirty-fold that of DDPG and TD3. The SAC agent is thus able to achieve better per-
formance, at the cost of a policy that is much more erratic and unrealistic. Such a behavior
can be controlled by tuning the entropy regularization. However, since SAC differs quite
fairly from DDPG, the algorithm was not studied further to maintain the focus on DDPG
and TD3. In that regard, TD3 was chosen as the base algorithm for the case study as it
offers more conservative estimates of the Q-values and thus achieves better performance in
general without diverging substantially from DDPG.

6.2 Reward Tuning
The reward function embeds the chosen trade-off between the different requirements that
are associated to the task. For the normalized reward function, these are the error to the
reference, the speed of the gimbals, and the magnitude of the control voltages. Before
starting an extensive hyperparameter search, the parameters of the reward function are
tuned in order to reflect the desired trade-off that we wish to obtain in the final control
law. Namely, we wish for the response of the agent to be realistic to ease the transfer to the
physical system, just like in LQR. As such, different configurations for the penalty on the
control voltages are tested, as shown in Table 11.
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Table 11: Reward configurations

Parameter Cfg. n°0 Cfg. n°1 Cfg. n°2

k 0.05 0.05 0.05
qθ̇ 0.01 0.01 0.01
qφ̇ 0.01 0.01 0.01
P1,1 0.01 0.1 0.5
P2,2 0.01 0.1 0.5

The performance metrics associated with these configurations are presented in Table 12.

Table 12: Metrics for the reward configurations

Metric Cfg. n°0 Cfg. n°1 Cfg. n°2

θ MAE [rad] 0.27 0.24 0.25
φ MAE [rad] 0.26 0.14 0.17
θ MSSE [rad] 0.06 0.07 0.08
φ MSSE [rad] 0.05 0.06 0.05
θ in bounds [%] 60.00 60.00 53.50
φ in bounds [%] 63.00 54.00 62.00
θ unsteady [%] 0.00 0.00 0.00
φ unsteady [%] 5.50 0.00 0.00
uθ [V] 1.14 1.11 0.85
uφ [V] 2.11 1.15 0.60
uθ variation [V] 0.17 0.13 0.07
uφ variation [V] 0.80 0.37 0.05

From the highlighted rows, it is clear that increasing the penalty on the control voltages
yield control laws that are less varying in time and thus more realistic. This does not come
at a significant cost in MAE and MSSE. We therefore choose the last configuration for the
hyperparameter search.

6.3 Hyperparameter Search
The hyperparameter search method described here is not representative of an ideal machine
learning workflow. In an ideal workflow, different configurations of hyperparameters would
be tested with multiple seeds to avoid selecting configurations that performed well due to fa-
vorable random processes. Different hyperparameter tuning algorithms such as grid-search,
random-search or even genetic algorithms would also be used in order to cover the hyper-
parameter domain. However, due to the speed bottleneck caused by the simulation, the
absence of parallelization on the Spinning Up framework and to the short timescale of the
case study, hyperparameter tuning was performed using a simplified algorithm suggested
in [11] and with single seeds. The performance was evaluated using two seeds for the last
iteration of the tuning process. It is important to note that since the performance is not
measured simply by using the learning curves but by evaluating a set of metrics on ran-
domly generated initial conditions, the problem of the seed is not as critical as in other cases.

40



The hyperparameter tuning algorithm from [11] is shown in Algorithm 1.

Algorithm 1: Hyperparameter tuning
Input: K hyperparameters, I baseline iterations;
for i = 1,2,. . . ,I do

Train the agent with Hi = {hi,k};
Evaluate the performance Pi;
for k = 1,2,. . . ,K do

Choose upper and lower bounds for hyperparameter hi,k;
Train the agent with hupi,k = upper bound and hlowi,k = lower bound;
Evaluate the performances Pup and Plow;
if baseline performance Pi is beaten then

hi+1,k ← argmax{Pup, Plow};
end

end
end

Such an algorithm is very intuitive in the sense that it drives the hyperparameter search
in the direction of increasing performance for each hyperparameter. It performs I(2K + 1)
experiments for I iterations and K hyperparameters, whereas grid-search would need (2K)I
as noted by [11]. It is thus much more realistic considering the time and computational
power constraints available. However, it does not cover the hyperparameter search domain
well as it does not perform experiments on crossed combinations of hyperparameters, pos-
sibly falling short of better configurations.

Algorithm 1 is then applied to the simplified model with a TD3 agent and a tuned nor-
malized reward function for I = 4. The configuration of hyperparameters at the end of each
iteration are summarized in Table 13, and the corresponding learning curves and perfor-
mance metrics in Figure 9 and Table 14 respectively.
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Figure 9: Learning curve for hyperparameter search

Table 13: Hyperparameter search iteration configurations

Parameter Baseline Iter. n°1 Iter. n°2 Iter. n°3 Iter. n°4

Epochs 800 800 800 800 800
Episode Length 110 110 110 110 110
Steps per Epoch 110 · 15 110 · 15 110 · 15 110 · 15 110 · 15
Gamma 0.995 0.99 0.985 0.985 0.985
π Learning Rate 0.001 0.001 0.0015 0.0015 0.0015
Q Learning Rate 0.001 0.001 0.0015 0.0015 0.0015
Polyak 0.995 0.999 0.999 0.999 0.999
Batch Size 100 150 150 150
Start Steps 20000 20000 20000 20000 20000
Hidden Sizes (400) (800) (700) (700,70) (700,70,10)
Actor Noise 0.1 0.1 0.1 0.5 0.5
Policy Delay 2 2 2 2 2
Target Noise 0.2 0.2 0.2 0.2 0.2
Noise Clip 0.1 0.05 0.04 0.04 0.04
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Table 14: Metrics for the hyperparameter search

Metric Baseline Iter. n°1 Iter. n°2 Iter. n°3 Iter. n°4∗0 Iter. n°4∗10

θ MAE [rad] 0.26 0.20 0.20 0.15 0.16 0.14
φ MAE [rad] 0.18 0.13 0.12 0.11 0.11 0.10
θ MSSE [rad] 0.07 0.05 0.02 0.0097 0.0060 0.0094
φ MSSE [rad] 0.05 0.02 0.02 0.0182 0.0134 0.0143
θ in bounds [%] 55.50 71.50 95.50 100.0 100.0 100.0
φ in bounds [%] 58.00 92.00 93.50 95.5 100.0 100.0
uθ [V] 0.83 0.76 0.79 0.83 0.86 0.76
uφ [V] 0.65 0.58 0.62 0.52 0.49 0.47
uθ variation [V] 0.07 0.06 0.07 0.07 0.08 0.07
uφ variation [V] 0.05 0.07 0.08 0.06 0.07 0.06

To analyze the results of this hyperparameter search, the major takeaway of each iteration
is studied:

• Iteration n°1: the learning curve shows convergence to a performance score of nearly
-100 compared to -125 for the baseline, and the slope of the learning curve in the
first 1e5 interactions is much steeper. The MSSE is roughly decreased by a factor of
two while the percentage of trials in bounds is drastically improved. Most probably, a
greater number of neurons in the hidden layer is necessary in order to build a regressor
that is complex enough to approximate the Q-function and the policy.

• Iteration n°2: the slope of the learning curve is not improved, however it shows con-
vergence to a performance score that is slightly greater. In fact, the MSSE is cut in
half for the red gimbal, and the percentage of trials in bounds is close to 100%. A
hypothesis would be that the bigger learning curve pushes the network to avoid previ-
ous local optimas. Since the increase in performance is slight, we decide to investigate
deeper networks and more action noise for the next iterations.

• Iteration n°3: the slope of the learning curve in the first 1e5 interactions is drastically
steeper, and shows convergence at a much higher score, namely -70. The MSSE is cut
in half again for the red gimbal with a slight improvement for the blue gimbal, while the
percentage of trials in bounds is 100% for the red gimbal. Two major hyperparameter
changes can explain those results: adding an extra hidden layer allows the function
approximator to decouple the feature extraction in two stages and is able to learn a
vastly more complex approximation of the Q-function and policy, allowing the score
to be much higher. The steepness of the learning curve slope can be explained by the
increased actor noise that helps the agent explore more in the early stages and avoid
falling in critical local optimas.

• Iteration n°4: the learning curve does not change. The MSSE is slightly improved,
particularly for seed 0, while the percentage of trials in bounds as now reached 100% for
both gimbals. The extra layer may help the network decouple the processing stages
even more and thus achieve the 100% in bounds, however further hyperparameter
search would be necessary to assess the validity of that conclusion.
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The agent trained at iteration n°4 using seed 0 will be used as the baseline for any further
comparative analysis.

6.4 Response Shaping
A further analysis of the effects of the choice of weights in the reward function is con-
ducted by training an agent with the hyperparameter configurations of iteration n°4 with
a normalized reward function defined by the weights in Table 15. Configuration n°0 and
n°1 respectively apply a decreasing and increasing weight on the control voltages penalty,
while configuration n°2 and n°3 apply an increasing weight on the gimbal velocities. The
corresponding performance metrics are presented in Table 16.

Table 15: Reward configurations for response shaping

Parameter Baseline Cfg. n°0 Cfg. n°1 Cfg. n°2 Cfg. n°3

k 0.05 0.05 0.05 0.05 0.05
qθ̇ 0.01 0.01 0.01 0.1 1
qφ̇ 0.01 0.01 0.01 0.1 1
P1,1 0.5 0.1 1 0.5 0.5
P2,2 0.5 0.1 1 0.5 0.5

Table 16: Metrics for the response shaping reward variations

Metrics Baseline Cfg. n°0 Cfg. n°1 Cfg. n°2 Cfg. n°3

θ rise time (s) 0.44 0.50 0.52 0.71 /
φ rise time (s) 0.34 0.33 0.52 0.65 /
θ settling time (s) 0.72 0.76 0.92 1.28 /
φ settling time (s) 0.65 0.56 0.87 0.96 /
uθ (V) 0.86 0.99 0.71 0.63 /
uφ (V) 0.49 0.57 0.47 0.52 /
uθ variation (V) 0.08 0.09 0.06 0.06 /
uφ variation (V) 0.07 0.08 0.05 0.04 /

Table 16 clearly shows the effect of adjusting the trade-off expressed in the reward function.
Decreasing the penalty on the control voltages makes the control law more erratic, but
without a significant effect on the rise and settling time, most probably because the response
are already sufficiently optimized in that regards. Increasing the penalty on the control
voltages makes the control law more realistic, at the cost of a slower overall response.
Increasing the penalty on the gimbal velocities nearly doubles the rise and settling times. In
configuration n°3, the penalty on the velocities is such that the algorithm is not even able
to converge. Reward tuning is thus important to assure convergence, realistic control laws
and to shape the overall response.
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Table 17: Metrics for the RL agent and the FL controller

Config. Baseline FL Controller

θ MAE [rad] 0.16 0.2434
φ MAE [rad] 0.11 0.2931
θ MSSE [rad] 0.0060 0
φ MSSE [rad] 0.0134 0
θ rise time [s] 0.59 1.03
φ rise time [s] 0.45 0.99
θ settling time [s] 0.79 1.79
φ settling time [s] 0.73 1.90
uθ [V] 0.86 1.32
uφ [V] 0.49 1.05
uθ variation [V] 0.08 0.12
uφ variation [V] 0.07 0.07

6.5 Control Evaluation
As a comparative analysis between the FL controller and the RL agent trained in a simpli-
fied model of the gyroscope, performance metrics are presented in Table 17.

Table 17 highlights the main benefits of each approach. Namely, the FL controller manages
to reach a MSSE of 0, while the baseline RL agent still produces a MSSE of an order of
magnitude of roughly 1e−2rad. On the other hand, the RL agent is able to cut the rise and
settling time of the FL controller by half, with even smoother control voltages.

Visual analysis of the performances of the performance of the RL agent is performed in
Figure 10, 11 and 12 with respectively step tracking, multi-step tracking and sine tracking
experiments. These experiments showcase the fast response of the RL agent.
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Figure 10: Step tracking comparison between the RL agent and the FL controller for θref =
60◦ and [θ0, φ0] = [0◦, 20◦] at 200 RPM
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Figure 11: Multi-step tracking comparison between the RL agent and the FL controller for
θref = 60◦,−60◦ and [θ0, φ0] = [0◦, 0◦] at 200 RPM
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Figure 12: Sine tracking comparison between the RL agent and the FL controller on θ for
A = 60◦, f = 0.1 Hz and [θ0, φ0] = [0◦, 0◦] at 200 RPM
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7 Domain Adaptation

The agent trained in the previous section learned a policy suited for a simplified and friction-
less model of the gyroscope. Whether the agent will be able to perform well on a simulation
with friction, or most importantly on the true physical system, is questionable. A study of
the sim-to-real problem, namely the design of methods to learn policies that can achieve
the desired goal on the physical system, is thus required to obtain a policy that is relevant
in the robotics context of this case study.

As expressed by [20], transferring control policies from a simulation to their physical coun-
terpart is a form of domain adaptation. Domain adaptation consists of transferring a model
trained in a source domain (here the simulation), onto a target domain (here the physical
system). Such an approach works based on the assumption that the two domains share
relevant characteristics that can be exploited in both.

7.1 Randomization of Dynamics
There exists multiple methods to execute domain adaptation in the context of RL for
robotics. An approach would be to perform transfer learning by fine-tuning the pre-trained
model on the true physical system, that way the agent can refine it’s policy and adapt to
the specific dynamics of the system. That way, the problem of the time constraints of train-
ing the model directly on the true system is alleviated, as the model learns the high-level
control characteristics in simulation, and the finer ones on the true system. However such
an approach still suffers from the security issues of setting up such an experiment, and due
to the COVID-19 outbreak, this approach was discarded.

Instead, this transfer learning approach can be done on a simulation of higher fidelity. For
instance, Coulomb and viscous friction can be added to the model, with constants identified
through optimization on physical data. Transfer learning can then be performed on a simu-
lation based on such a model. However, as noted by [5], system identification on the friction
constants yields different results for different experiments, a sign that the Coulomb and vis-
cous friction model used are not representative of the true physical system. As pointed out
earlier, building a more complex model of the system would make a RL approach irrelevant.
A robust alternative to training a model on a simulation with identified friction constants,
is to train the model on a simulation with randomized friction constants. Such an approach,
called domain randomization, models differences between the source and target domains as
variability in the source domain. The agent is forced to learn a policy that is robust to
the uncertainties in the dynamics of the system. In addition, noise can be added to the
constants of inertia to achieve this goal.

Formally, the framework is similar to the one employed by [17] and [20]. Namely, the
goal is to train a policy that can control the gyroscope under the dynamics of the real world
P ∗(s′|s, a). For practical purposes, the policy is instead trained on estimated dynamics
P̂ (s′|s, a) ≈ P ∗(s′|s, a) in a simulation. For robustness, the policy is trained on randomized
dynamics models, where a set of dynamics parameters is parametrized by λ. The dynamics
of the simulation is then P̂ (s′|s, a, λ) and the objective function subject to the distribution
ρλ of dynamics models becomes:
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J(π, λ) = E
λ∼ρλ

[
E

τ∼π,λ

[ ∞∑
t=0

γtrt|π, λ

]]
The Gym environment is thus set-up with a randomization method that draws a new set of
inertia and friction constants at each environment reset:

• The Coulomb and viscous friction constants are drawn from a uniform distribution in
the range [0, 0.05].

• Gaussian noise is added to the inertia constants with standard deviation equal to 30%
of the default value.

7.2 Adaptability Evaluation
For comparison before training a robust policy, the FL controller and the baseline policy
trained in the previous section are tested on the robust environment to evaluate their per-
formance on unseen dynamics. The previous step tracking experiment is thus reiterated on
the new environment for both the FL controller and the RL agent, respectively in Figure 13
and Figure 14. In both figures, the results are shown for both the simplified environment
and the robust environment. Let us recall that the friction constants used to derive the FL
controller are the ones from Table 3. For the experiment however, the friction constants of
the environment were set to the ones in Table 18, while the inertias were set to 125% of
their default value.

Table 18: Friction constants

fcr fvr fcb fvb

0.001 0.002679 0.001 0.005308
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Figure 13: Step tracking comparison for the FL controller in the classic and robust environ-
ments for θref = 60◦ and [θ0, φ0] = [0◦, 20◦] at 200 RPM
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Figure 14: Step tracking comparison for the RL agent in the classic and robust environments
for θref = 60◦ and [θ0, φ0] = [0◦, 20◦] at 200 RPM

Figure 13 shows clearly that the FL controller is not able to generalize to variability in the
dynamics of the environment and is highly dependent on the accuracy of the model. It has
to be noted that this issue can be alleviated by adding an integrator, as done in the last
part of [5]. In comparison, Figure 14 shows that the baseline agent performs just as well in
the robust environment as in the simplified environment.

To put this surprising last result into perspective, domain adaptation is performed by train-
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ing the same agent (iteration n°4 of Table 13) on the robust environment. The performance
metrics of the baseline and the robust agents for 200 random resets of the dynamics and
initial conditions of the gyroscope are presented in Table 19.

Table 19: Metrics for agents on the randomized environment

Config. Baseline Robust

θ MAE [rad] 0.15 0.16
φ MAE [rad] 0.13 0.09
θ MSSE [rad] 0.0072 0.0071
φ MSSE [rad] 0.0139 0.0131
θ in bounds [%] 100.00 100.00
φ in bounds [%] 98.50 99.50
uθ [V] 1.0143 0.9551
uφ [V] 0.8122 0.7348
uθ variation [V] 0.21 0.14
uφ variation [V] 0.20 0.11

As highlighted in Table 19, it can indeed be seen that the MSSE metrics are similar for
both agents. It could be concluded that the domain adaptation is not needed and that the
baseline policy is already robust to variability in the dynamics of the environment. The last
two highlights however, namely the control voltage variation metrics, show that the baseline
agent acts more erratically when faced with unseen dynamics whereas the robust agent is
able to learn a policy that is more realistic and thus that might generalize better to the
dynamics of the real system.

The domain adaptation work presented above is targeted at variability in the dynamics of
the gyroscope, namely the inertias and the friction parameters. Another source of adaptabil-
ity can be studied: variability in the disk rotation speed ω. Such a variability is considerably
different. In fact, whereas the dynamics of the environment are not readily accessible by
the agent, the disk rotation speed is, as it is measured in the physical system and part of
the observation ot fed to the agent. The agent is thus robust to this parameter without an
apparent need for domain adaptation. However, the disk angular velocities are varied from
an episode to the next, but kept constant throughout an episode. A study can therefore be
made on the adaptability of the agent to disk angular velocities that vary throughout an
episode. A step tracking experiment is therefore set up with a disk rotation speed following
a sine of mean 200RPM, amplitude 10RPM, and varying frequency.
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Figure 15: Step tracking for the robust RL agent in the robust environment for θref = 60◦

and [θ0, φ0] = [0◦, 20◦] with a disk angular velocity following a sine wave centered at 200RPM
of amplitude 10RPM and varying frequency

Results in Figure 15 show that the robust agent is able to generalize and control the gyro-
scope to a satisfactory level. However, it is possible to observe non-stationary behaviors in
the blue gimbal that depend on the disk rotation speed frequency. Such a behavior can be
explained by the fact that the agent was trained with (observed) disk angular velocities that
were constant throughout an episode. In further work, training the agent with disk angular
velocities that vary throughout an episode could be investigated, in the same fashion as it
was done for the parameters of the dynamics model.
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8 Interpretability

Leveraging DNNs as function approximators has considerably transformed the field of RL.
The success of DRL algorithms, and of DNNs in general, comes from their ability to auto-
matically learn high-level representations of the data in order to execute a desired task, be it
classification or regression. However this makes DNNs hard to understand. Interpretability
in AI is a growing research interest [21]. It is also highly relevant for DRL as understanding
what the agent has learned is key in order to improve the agent’s performance in the design
loop, as seen in the famous DQN paper [22].

8.1 Representation Learning
In RL, observations that are spatially similar can result in very dissimilar control rules. This
is why DNNs are powerful function approximators for RL as they can automatically learn
highly non-linear feature representations of the observation. Each layer of the DNN can be
viewed as consisting of an intermediate stage of the representation, the final representation
being used and combined at the output of the critic function approximator to compute
the optimal action to be taken. The Internal Model Principle (IMP) [23] of control theory
informally states that a controller must contain a subsystem tasked with predicting, in some
form, the dynamics of the system. In that regards, the feature representation learned by the
DNN must allow it to easily discriminate between observations that differ from a dynamical
perspective [24].

8.2 Dimensionality Reduction with t-SNE
In order to highlight this aggregation (respectively discrimination) between dynamically
similar (respectively dissimilar) observations, the activations of each hidden layer of a DNN
can be studied. To this end, the t-SNE algorithm [25] is used to lower the dimensionality
of the activations. The t-SNE algorithm is a dimensionality reduction technique that can
capture aggregation in the data at different scales.

To do so, t-SNE starts by converting the high-dimensional Euclidean distances between
datapoints into pairwise conditional probabilities. The similarity of datapoint xj to xi is
thus defined as a conditional probability pj|i that is proportionate to a Gaussian centered
at xi:

pj|i =
exp
{
−||xi − xj ||2/2σ2

i

}∑
k 6=i exp{−||xi − xk||2/2σ2

i }

where σi, the variance of the Gaussian at xi, is computed to be small for datapoints in
dense regions and large for sparser regions through a hyperparameter called perplexity,
which controls the number of neighbors to any datapoint. The joint probabilities are then
computed:

pij =
pj|i + pi|j

2N

Using this computed pairwise probability distribution in the high dimensional space, the
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goal is to preserve this relationship in the lower dimensional space. To do so, the joint prob-
abilities between yi and yj in the lower dimensional space are expressed using a Student
t-distribution, which has a better tendency to reduce crowing in lower dimensions:

qij =
(1 + ||yi − yj ||2)−1∑
k 6=i(1 + ||yi − yk||2)−1

In order to locate the datapoints yi on the newly created lower dimensional map, gradient
descent on the Kullback-Leibler divergence of the two distributions is done an the optimiza-
tion loop. This way, the probability distribution in the two spaces will be made similar.

It is important to note that t-SNE works on a defined dataset, thus the dimensionality
reduction cannot be applied to new testing datapoints. It is thus purely a visualization
technique.

8.3 Visual Analysis of Learned Representations
To apply the t-SNE algorithm, 1000 observations are randomly generated with a set of
constraints defined by the experiment. For each observation, the activations of the actor’s
hidden layers are stored, as well as the control inputs of the actor network. The activation
data, where each datapoint has dimensionality Ni corresponding to the number of neurons
of layer i, is then fed to the t-SNE algorithm for a 2D dimensionality reduction. To visualize
the clusters results from t-SNE, each datapoint is colored according to the actor network
output (which is the control input) for the observation that generated that datapoint, as
well as attributes of the observation such as the gimbal and disk angular velocities. This
coloring is so that clusters can be identified with respect to dynamical similarities of the
input observations. Finally, the same procedure is done with a DNN with random weights
as a control to put the results obtained into perspective.

As highlighted in Chapter 5.1, for the observation augmented with a normalized integral,
the similarities with the baseline learning curve suggest that the DNN learns to discard the
extra observation. To verify such a hypothesis, t-SNE can be applied to visualize the activa-
tions of the single hidden layer of the DDPG baseline configuration of Chapter 5.1. To make
the cluster identification easier, the observations are generated with a set of constraints:

• φ, φ̇, φref and iφ are set to 0 in order to focus the identification on θ.

• θ is set to 0◦ while θref is set to 5◦ in order to study the steady-state error case.

The t-SNE results are colorized according to three parameters: the actor network control
inputs uθ, the angular velocity θ̇ and the normalized integral iθ of the red gimbal. The results
are presented for a trained agent in Figure 16 and for a control with the same configuration
in Figure 17.
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Figure 16: Colorized t-SNE results for the integral-augmented agent with u1≡ uθ
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Figure 17: Colorized t-SNE results for the integral-augmented control with u1≡ uθ

In Figure 16, the θ̇ colormap shows that the activations for similar velocities are clustered
together. By looking at the corresponding control, it could be said that the clustering is
not due to the network learning anything since the clustering looks similar for the control.
However, by looking at the uθ colormap, it can be seen that positive velocities correspond
to negative control inputs and vice-versa. This is intuitive as a positive velocity means that
the gimbal is turning in the right direction and that it needs to be slowed down to avoid
overshoot, hence the negative voltage. In the control, such a correspondence cannot be seen.
This analysis suggests that the DNN’s hidden layer is able to learn a representation that
discriminates between angular velocities, which is used at the final output to compute the
proper control. However such a correspondence cannot be seen in the iθ colormap, which
looks random. It can thus be assumed that the DNN learns to discard the normalized inte-
gral observations.

Similarly, this study can be conducted for the robust agent of Chapter 7.2 to study the
activations at each of the three hidden layers. To make the cluster identification easier, the
observations are generated with a set of constraints:

• φ, φ̇ and φref are set to 0 in order to focus the identification on θ.

• θ is set to 0◦ while θref is set to 60◦ in order to study the step-tracking case.

The t-SNE results are colorized according to three parameters: the actor network control
input uθ and the angular velocity θ̇ of the red gimbal, as well as the disk’s angular velocity
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ω. The results are presented for a trained agent in Figure 18 and for a control with the
same configuration in Figure 19.
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Figure 18: Colorized t-SNE results for the robust agent with u1≡ uθ
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Figure 19: Colorized t-SNE results for the robust control with u1≡ uθ

Again, the same correspondence between velocity and control input can be seen from the uθ
and θ̇ colormaps, a clue that the DNN is able to learn a representation that discriminates
between angular velocities. As the clustering gets finer after each layer, it can be assumed
that the representation gets more abstract and general deeper into the network. It is impor-
tant to note at this point the importance of comparing with the control. We see that t-SNE
also groups datapoints by color for the control. However, this grouping shows none of the
correspondence highlighted for the trained agent. Furthermore, the color gradient is mostly
linear and smooth, a sign that the input data is not manipulated throughout the layers.
With these considerations and by looking at the ω colormap, it is not safe to say that the
network is able to learn a representation that discriminates for the disk’s angular velocity
before the third hidden layer. In fact, for the first two hidden layers, the visualization are
comparable to the control. In the last hidden layer however, there is a clear distinction
between negative velocities on the left and positive ones on the right, with low velocities
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(positive or negative) fused in the middle. There is no correspondence with the uθ colormap
however, it can thus be assumed that this information is not relevant for this experiment as it
is not used at the output. Since the representation has been learned, it can be assumed that
it is relevant for other settings. Further investigation can be conducted using the workflow
presented here on other carefully chosen experiments in order to highlight other features of
the representation and to better understand the policy learned.
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9 Going Further

The results derived throughout this work have shown that DRL algorithms can learn pow-
erful policies that can adapt to uncertainty in the dynamics of the model in an end-to-end
fashion that requires little domain knowledge and rather simple dynamical models. How-
ever the careful design loop has not been able to permanently cancel the steady-state error,
which makes the derived agent inferior in terms of control standards. This realization paves
the way for further investigations, most notably in the areas stated below:

• Implementation: the Spinning Up framework has been used extensively throughout
this case study, as it offered easily accessible resources which were perfect to start work-
ing fast. However, the absence of parallelization and the lack of scheduling for noise
and learning rates has been ultimately detrimental. Parallelized algorithms would
allow for much more tests to be done, which would result in a more rigorous hyperpa-
rameter search that could unlock even better agents. Thus, it is highly recommended
to use RLlib from the start, or other similar frameworks. In addition, the failure of
the integral-augmented observation should be studied in more details as to identify
the cause of the unlearning phenomenon. Other ways of adding memory to counteract
the steady-state error should be investigated.

• Inverse RL: by looking at the difficulty posed by reward engineering for the gyroscope,
it is natural to consider automatic reward design paradigms, such as Inverse Reinforce-
ment Learing (IRL). The goal of IRL is to learn a reward function that best explains a
set of expert demonstrations. In that way expert demonstrations could be generated
using existing controllers, such as the FL controller, and the reward function could be
learned from those. Maximum Entropy IRL does not assume that the expert follows
the optimal policy, as such the reward function can still be learned from sub-optimal
demonstrations [26]. IRL is a form of imitation learning, which does not seek the
reward explicitly, but could also be studied as a way to leverage existing controller.

• System identification: the randomization of dynamics method presented in Chapter
7.1 has shown promising results. However it relies only on a transfer learning approach
to increase robustness to variability in the dynamics. An alternative would be to add
a system identification module to the agent that uses past states and action in order to
predict the dynamics parameters µ̂. A policy could then be trained using this module:
π(at|st, µ̂). In [20], a recurrent architecture is used to fuse this identification module
directly onto the actor-critic architecture.

• Interpretability: the analysis of the learned representation was only an overview of the
possibilities at hand to understand the policy learned by the agent. More work can go
into exploring t-SNE for other configurations. Furthermore, [21] presents a framework
to automatically analyze the policy for games, which could be applied to the context
of this case study.
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10 Conclusion

The aim of the case study was to analyze the feasibility of using DRL to train agents capa-
ble of learning to control a gyroscope. While doing so, the DRL workflow for robotics was
challenged and refined in order to build a consistent way of approaching such problems. In
the end, the trained agent was capable of reaching a satisfying control performance. Fur-
thermore, it proved to be robust to uncertainties in the dynamics parameters. The steps
required to achieve this include: building a simulation environment of the gyroscope compat-
ible with standard RL frameworks, a careful analysis of reward functions, hyperparameter
search aimed at reducing the steady-state error, and domain adaptation using randomized
dynamics to increase robustness. The trained agent was then analyzed using t-SNE to bet-
ter understand the policy derived.

Building an environment is key in any RL problem. As demonstrated, naive definitions
of the observation returned by the environment can lead to unintuitive results. As such,
changing the definition of the observation to circumvent the discontinuity issue was essential
in order to learn a proper policy at any desired tracking point.

The issue of drawing too strict parallels with control theory also emerged when choosing the
quadratic function as a reward signal. After analysis it became apparent that better choices
of reward function exist, which encourage more the agent to get rid of the steady-state
error. However, a systematic solution was not found to get completely rid of this issue, and
IRL could be studied as an alternative to manual reward engineering. Also, the unlearn-
ing phenomenons observed for the integral-augmented observation still remain unanswered.
Analysis using interpretability techniques could be performed in order to better understand
this behavior.

The hyperparameter search helped in dramatically reducing the steady-state error, most
notably by building deeper networks and with more exploration incentives. In the end,
the trained agent outperformed the FL controller in terms of speed of response, but not in
steady-state error.

A simple domain adaptation technique showed that an agent robust to uncertainty in dy-
namics parameters could be trained without the need for high fidelity simulators. This
result builds confidence in the ability of the agent to be deployable on the true system.

The main shortcoming of this work remains the absence of any validation on the real system.
With that in mind, it remained a driving guideline of the project to be able to question
the true capabilities of the agent (through domain adaptation and interpretability analysis),
as it has been observed that RL agents can exploit idiosyncrasies of the simulator. Thus,
validation and testing on the true system is an essential improvement.
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