
1

A Quick Intro to using HDF5

• What is HDF5 (Hierarchical Data Format)?

• FUTILS: A Module of F90 routines built on HDF5
– Diagnostic files for ORB5 (first motivation)
– Restart files (parallel IO with MPI-IO)
– Simple to use (specialized for some types of simulations

similar to ORB5)

• Access/Visualization of HDF5 files:
– NCSA tools: h5ls, h5dump, hdfview
– 2d visualization: Matlab, Python, …
– Others tools: OpenDX, VTK, Paraview, Chombo, …

2

What is HDF5?

• File format for storing scientific data
– To store and organize all kinds of data
– To share data , to port files from one platform to another

• Software for accessing scientific data
– Flexible I/O library (parallel, remote, etc.)
– Efficient storage
– Available on almost all platforms
– C, F90, C++ , Java APIs
– Tools (HDFView, utilities)

3

Storage Capacity

• Store large
objects

• Store large
numbers of
objects

Limit:
2 gigabytes no limit

HDF4 HDF5

Limit:
20,000 objects

no limit

HDF5 file = groups + datasets

“/” (root)

“/foo”

Raster imageRaster image

palettepalette

3-D array3-D array

2-D array2-D arrayRaster imageRaster image

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

TableTable

5

Groups

• Group structure for organizing the file
• Every file starts with

a root group
• Like directories

in file system
• Groups have

attributes

“/”

“/foo”

“/foo/bar”

Dataset Components

DataMetadata
Dataspace

3

RankRank

Dim_2 = 5
Dim_1 = 4

DimensionsDimensions

Time = 32.4

Pressure = 987

Temp = 56

AttributesAttributes

Extendable

Compressed

Dim_3 = 7

Storage infoStorage info

IEEE 32-bit float

DatatypeDatatype

7

Special Storage Options

• compressed

• extendable

Improves storage
efficiency

Arrays can be
extended
individually

8

Sample Mappings between File Dataspaces
and Memory Dataspaces

(c) A sequence of points from a
2D array to a sequence of points
in a 3D array.

(d) Union of hyperslabs in file to union
of hyperslabs in memory.

(b) Regular series of blocks from a
2D array to a contiguous sequence at
a certain offset in a 1D array

(a) Hyperslab from a 2D array to
the corner of a smaller 2D array

9

Module FUTILS

• Double precision real (64 bits) arrays in memory

• 32 bit (default) or 64 bit IEEE Float Little Endian on file

• Optional Compression (GZIP)

• Fixed dimension arrays
– ARRAY(Nx, Ny, Nz)

• Extendable array with unlimited last dimension (for the
time)
– ARRAY(Nx, Ny, 1:∞)

• Real/Integer attributes attached to groups and datasets

10

Subroutines of FUTILS

• Files
– creatf, openf, closef

• Groups
– creatg

• Datasets
– putarr: array(nx, ny, nz) fixed dim.
– creatd, append: array(nx, ny, …) unlimited last dim.

• Attributes
– attachg, attachd

11

Others Tools

• HDF5 distribution: h5ls, h5dump

• Graphical browser: hdfview

• Matlab: hdf5read
– phi = hdf5read(‘demo.h5’, ‘/profile_2d/phi’)

• Python: pytables + matplotlib (matlab clone)
– f = openFile(‘demo.h5’, mode=‘r’)
– phi_id = f.getNode(‘/profile_2d’, ‘phi’)
– phi = phi_id[:, ::2]

12

Parallel HDF5

• Use MPI-IO (MPI2 standard) => Portable
– MPICH2: on top of ROM-IO (NFS, UFS and PVFS2)
– BG/L MPI (based on MPICH2): GPFS

• All processors can access to the same file.

• Efficiency for a Parallel File System:
– PVFS2 in PLEIADES2
– GPFS in BG/L

• Very easy to use with parallel FUTILS

13

Parallel FUTILS (actual version)

• 1D parallel partition
– Only 1 dimension is partitioned (can be any)
– Examples:

• ARRAY(Nx, Ny/P) partitioned by columns
• ARRAY(Nx/P, Ny) partitioned by rows
• ARRAY(Nx, Ny/P, Nz)

• User Interface
– Same subroutines as in the serial FUTILS
– Optional argument mpicomm in CREATF/OPENF to

define the MPI Communicator.
– Optional argument pardim in PUTARR to indicate which

dimension is partitioned.

14

Conclusions

• Is useable, at least for DIAGNOSTICS in ORB5

• TODO list:
– Read datasets: RESTART
– Benchmarking parallel IO
– Tables: store the input NAMELIST

• Need feedbacks from users: bugs and new features

• SVN repositories:
– http://crppsvn.epfl.ch/repos/private_tmt/futils/tags/release-1.0/ (serial)
– http://crppsvn.epfl.ch/repos/private_tmt/futils/tags/release-2.0/ (parallel)

http://crppsvn.epfl.ch/repos/private_tmt/futils/tags/release-1.0/
http://crppsvn.epfl.ch/repos/private_tmt/futils/tags/release-2.0/

