A Quick Intro to using HDF5

- What is HDF5 (Hierarchical Data Format)?
- FUTILS: A Module of F90 routines built on HDF5
 - Diagnostic files for ORB5 (first motivation)
 - Restart files (parallel IO with MPI-IO)
 - Simple to use (specialized for some types of simulations similar to ORB5)
- Access/Visualization of HDF5 files:
 - NCSA tools: h5ls, h5dump, hdfview
 - 2d visualization: Matlab, Python, ...
 - Others tools: OpenDX, VTK, Paraview, Chombo, ...

What is HDF5?

- File format for storing scientific data
 - To store and organize all kinds of data
 - To share data, to port files from one platform to another
- Software for accessing scientific data
 - Flexible I/O library (parallel, remote, etc.)
 - Efficient storage
 - Available on almost all platforms
 - C, F90, C++ , Java APIs
 - Tools (HDFView, utilities)

Storage Capacity

Store large objects

 Store large numbers of objects

HDF5 file = groups + datasets

Groups

- Group structure for organizing the file
- Every file starts with a root group
- Like directories in file system
- Groups have attributes

Dataset Components

Metadata

Dataspace Rank Dimensions

3

 $Dim_1 = 4$

Dim 2 = 5

 $Dim_3 = 7$

Datatype

IEEE 32-bit float

Storage info

Extendable

Compressed

Attributes

Time = 32.4

Pressure = 987

Temp = 56

Special Storage Options

compressed

Improves storage efficiency

extendable

Arrays can be extended individually

Sample Mappings between File Dataspaces and Memory Dataspaces

(a) Hyperslab from a 2D array to the corner of a smaller 2D array

(c) A sequence of points from a 2D array to a sequence of points in a 3D array.

(b) Regular series of blocks from a 2D array to a contiguous sequence at a certain offset in a 1D array

(d) Union of hyperslabs in file to union of hyperslabs in memory.

Module FUTILS

- Double precision real (64 bits) arrays in memory
- 32 bit (default) or 64 bit IEEE Float Little Endian on file
- Optional Compression (GZIP)
- Fixed dimension arrays
 - ARRAY(Nx, Ny, Nz)
- Extendable array with unlimited last dimension (for the time)
 - ARRAY(Nx, Ny, 1:∞)
- Real/Integer attributes attached to groups and datasets

Subroutines of FUTILS

Files

- creatf, openf, closef

Groups

creatg

Datasets

- putarr: array(nx, ny, nz) fixed dim.
- creatd, append: array(nx, ny, ...) unlimited last dim.

Attributes

- attachg, attachd

Others Tools

- HDF5 distribution: h5ls, h5dump
- Graphical browser: hdfview
- Matlab: hdf5read
 - phi = hdf5read('demo.h5', '/profile_2d/phi')
- Python: pytables + matplotlib (matlab clone)
 - f = openFile('demo.h5', mode='r')
 - phi_id = f.getNode('/profile_2d', 'phi')
 - phi = phi_id[:, ::2]

Parallel HDF5

- Use MPI-IO (MPI2 standard) => Portable
 - MPICH2: on top of ROM-IO (NFS, UFS and PVFS2)
 - BG/L MPI (based on MPICH2): GPFS
- All processors can access to the same file.
- Efficiency for a Parallel File System:
 - PVFS2 in PLEIADES2
 - GPFS in BG/L
- Very easy to use with parallel FUTILS

Parallel FUTILS (actual version)

1D parallel partition

- Only 1 dimension is partitioned (can be any)
- Examples:
 - ARRAY(Nx, Ny/P) partitioned by columns
 - ARRAY(Nx/P, Ny) partitioned by rows
 - ARRAY(Nx, Ny/P, Nz)

User Interface

- Same subroutines as in the serial FUTILS
- Optional argument mpicomm in CREATF/OPENF to define the MPI Communicator.
- Optional argument pardim in PUTARR to indicate which dimension is partitioned.

Conclusions

- Is useable, at least for DIAGNOSTICS in ORB5
- TODO list:
 - Read datasets: RESTART
 - Benchmarking parallel IO
 - Tables: store the input NAMELIST
- Need feedbacks from users: bugs and new features
- SVN repositories:
 - http://crppsvn.epfl.ch/repos/private_tmt/futils/tags/release-1.0/ (serial)
 - http://crppsvn.epfl.ch/repos/private_tmt/futils/tags/release-2.0/ (parallel)